BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21679469)

  • 101. Gβγ mediates activation of Rho guanine nucleotide exchange factor ARHGEF17 that promotes metastatic lung cancer progression.
    García-Jiménez I; Cervantes-Villagrana RD; Del-Río-Robles JE; Castillo-Kauil A; Beltrán-Navarro YM; García-Román J; Reyes-Cruz G; Vázquez-Prado J
    J Biol Chem; 2022 Jan; 298(1):101440. PubMed ID: 34808208
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Two distinct calmodulin binding sites in the third intracellular loop and carboxyl tail of angiotensin II (AT(1A)) receptor.
    Zhang R; Liu Z; Qu Y; Xu Y; Yang Q
    PLoS One; 2013; 8(6):e65266. PubMed ID: 23755207
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration.
    O'Neill PR; Gautam N
    Mol Biol Cell; 2014 Aug; 25(15):2305-14. PubMed ID: 24920824
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Simultaneous inhibition of key growth pathways in melanoma cells and tumor regression by a designed bidentate constrained helical peptide.
    Dhar A; Mallick S; Ghosh P; Maiti A; Ahmed I; Bhattacharya S; Mandal T; Manna A; Roy K; Singh S; Nayak DK; Wilder PT; Markowitz J; Weber D; Ghosh MK; Chattopadhyay S; Guha R; Konar A; Bandyopadhyay S; Roy S
    Biopolymers; 2014 Jul; 102(4):344-58. PubMed ID: 24839139
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Gαs slow conformational transition upon GTP binding and a novel Gαs regulator.
    Ahn D; Provasi D; Duc NM; Xu J; Salas-Estrada L; Spasic A; Yun MW; Kang J; Gim D; Lee J; Du Y; Filizola M; Chung KY
    iScience; 2023 May; 26(5):106603. PubMed ID: 37128611
    [TBL] [Abstract][Full Text] [Related]  

  • 106. WD40-repeat proteins control the flow of Gβγ signaling for directional cell migration.
    Runne C; Chen S
    Cell Adh Migr; 2013; 7(2):214-8. PubMed ID: 23302952
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Targeted Quantitative Profiling of GTP-Binding Proteins Associated with Metastasis of Melanoma Cells.
    Cai R; Bade D; Liu X; Huang M; Qi TF; Wang Y
    J Proteome Res; 2021 Nov; 20(11):5189-5195. PubMed ID: 34694799
    [TBL] [Abstract][Full Text] [Related]  

  • 108. GPR4 in the pH-dependent migration of melanoma cells in the tumor microenvironment.
    Stolwijk JA; Wallner S; Heider J; Kurz B; Pütz L; Michaelis S; Goricnik B; Erl J; Frank L; Berneburg M; Haubner F; Wegener J; Schreml S
    Exp Dermatol; 2023 Apr; 32(4):479-490. PubMed ID: 36562556
    [TBL] [Abstract][Full Text] [Related]  

  • 109. GNG2 inhibits invasion of human malignant melanoma cells with decreased FAK activity.
    Yajima I; Kumasaka MY; Yamanoshita O; Zou C; Li X; Ohgami N; Kato M
    Am J Cancer Res; 2014; 4(2):182-8. PubMed ID: 24660107
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Evaluation of Vision LLMs GTP-4V and LLaVA for the Recognition of Features Characteristic of Melanoma.
    Akrout M; Cirone KD; Vender R
    J Cutan Med Surg; 2024; 28(1):98-99. PubMed ID: 38174854
    [No Abstract]   [Full Text] [Related]  

  • 111. [WITHDRAWN Control of platelet function by Epac protein.].
    Börgermann C; Schenck M; Jakobs KH; Schmidt M; Rübben H; Vom Dorp F
    Urologe A; 2007 Aug; ():. PubMed ID: 17628777
    [No Abstract]   [Full Text] [Related]  

  • 112. EPAC Regulates Melanoma Growth by Stimulating mTORC1 Signaling and Loss of EPAC Signaling Dependence Correlates with Melanoma Progression.
    Krishnan A; Bhasker AI; Singh MK; Rodriguez CI; Pérez EC; Altameemi S; Lares M; Khan H; Ndiaye M; Ahmad N; Schieke SM; Setaluri V
    Mol Cancer Res; 2022 Oct; 20(10):1548-1560. PubMed ID: 35834616
    [TBL] [Abstract][Full Text] [Related]  

  • 113. The Role of Calcium Signaling in Melanoma.
    Zhang H; Chen Z; Zhang A; Gupte AA; Hamilton DJ
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35162934
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma.
    Raymond JH; Aktary Z; Larue L; Delmas V
    Cancers (Basel); 2022 Jan; 14(3):. PubMed ID: 35158973
    [TBL] [Abstract][Full Text] [Related]  

  • 115. The Role of Neuropeptide-Stimulated cAMP-EPACs Signalling in Cancer Cells.
    Gao Z; Lei WI; Lee LTO
    Molecules; 2022 Jan; 27(1):. PubMed ID: 35011543
    [TBL] [Abstract][Full Text] [Related]  

  • 116. The Role of Epac in Cancer Progression.
    Wehbe N; Slika H; Mesmar J; Nasser SA; Pintus G; Baydoun S; Badran A; Kobeissy F; Eid AH; Baydoun E
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899451
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development.
    Robichaux WG; Cheng X
    Physiol Rev; 2018 Apr; 98(2):919-1053. PubMed ID: 29537337
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Insights into exchange factor directly activated by cAMP (EPAC) as potential target for cancer treatment.
    Kumar N; Prasad P; Jash E; Saini M; Husain A; Goldman A; Sehrawat S
    Mol Cell Biochem; 2018 Oct; 447(1-2):77-92. PubMed ID: 29417338
    [TBL] [Abstract][Full Text] [Related]  

  • 119. EPAC-RAP1 Axis-Mediated Switch in the Response of Primary and Metastatic Melanoma to Cyclic AMP.
    Rodríguez CI; Castro-Pérez E; Prabhakar K; Block L; Longley BJ; Wisinski JA; Kimple ME; Setaluri V
    Mol Cancer Res; 2017 Dec; 15(12):1792-1802. PubMed ID: 28851815
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Exchange proteins directly activated by cAMP (EPACs): Emerging therapeutic targets.
    Wang P; Liu Z; Chen H; Ye N; Cheng X; Zhou J
    Bioorg Med Chem Lett; 2017 Apr; 27(8):1633-1639. PubMed ID: 28283242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.