These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 2167967)

  • 1. Cation transport by sweat ducts in primary culture. Ionic mechanism of cholinergically evoked current oscillations.
    Larsen EH; Novak I; Pedersen PS
    J Physiol; 1990 May; 424():109-31. PubMed ID: 2167967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride and potassium conductances of cultured human sweat ducts.
    Novak I; Pedersen PS; Larsen EH
    Pflugers Arch; 1992 Nov; 422(2):151-8. PubMed ID: 1283216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetraethylammonium-sensitive apical K+ channels mediating K+ secretion by turtle colon.
    Wilkinson DJ; Kushman NL; Dawson DC
    J Physiol; 1993 Mar; 462():697-714. PubMed ID: 8392578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amiloride-sensitive Na+ transport across cultured renal (A6) epithelium: evidence for large currents and high Na:K selectivity.
    Wills NK; Millinoff LP
    Pflugers Arch; 1990 Jul; 416(5):481-92. PubMed ID: 2172913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular pH and its relationship to regulation of ion transport in normal and cystic fibrosis human nasal epithelia.
    Willumsen NJ; Boucher RC
    J Physiol; 1992 Sep; 455():247-69. PubMed ID: 1336551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinergic-induced oscillating transepithelial short-circuit current in cultured human sweat duct cells.
    Pedersen PS
    Acta Physiol Scand; 1990 Mar; 138(3):359-68. PubMed ID: 2183541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human eccrine sweat gland epithelial cultures express ductal characteristics.
    Brayden DJ; Cuthbert AW; Lee CM
    J Physiol; 1988 Nov; 405():657-75. PubMed ID: 3255802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular potassium activity and the role of potassium in transepithelial salt transport in the human reabsorptive sweat duct.
    Reddy MM; Quinton PM
    J Membr Biol; 1991 Feb; 119(3):199-210. PubMed ID: 2056520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological study of transport systems in isolated perfused pancreatic ducts: properties of the basolateral membrane.
    Novak I; Greger R
    Pflugers Arch; 1988 Jan; 411(1):58-68. PubMed ID: 3353213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human sweat duct cells in primary culture. Basic bioelectric properties of cultures derived from normals and patients with cystic fibrosis.
    Pedersen PS
    In Vitro Cell Dev Biol; 1989 Apr; 25(4):342-52. PubMed ID: 2541128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a novel diuretic, 7-chloro-2,3-dihydro-1-(2-methylbenzoyl)-4(IH)-quinolinone-4-oxime-o- sulfonic acid, potassium salt (M17055) on Na+ and K+ transport in the distal nephron segments.
    Yasoshima K; Yamasaki F; Shinkawa T; Yoshitomi K; Imai M
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1581-8. PubMed ID: 8396638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colonic-crypt-derived epithelia express induced ion transport differentiation in monolayer cultures on permeable matrix substrata.
    Horster M; Fabritius J; Büttner M; Maul R; Weckwerth P
    Pflugers Arch; 1994 Jan; 426(1-2):110-20. PubMed ID: 8146013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for apical sodium channels in frog lung epithelial cells.
    Fischer H; Van Driessche W; Clauss W
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C764-71. PubMed ID: 2539725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane potentials and intracellular Cl- activity of toad skin epithelium in relation to activation and deactivation of the transepithelial Cl- conductance.
    Willumsen NJ; Larsen EH
    J Membr Biol; 1986; 94(2):173-90. PubMed ID: 3104597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of sodium and chloride transport across equine tracheal epithelium.
    Tessier GJ; Traynor TR; Kannan MS; O'Grady SM
    Am J Physiol; 1990 Dec; 259(6 Pt 1):L459-67. PubMed ID: 2260677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basolateral amiloride-sensitive Na+ transport pathway in rat tongue epithelium.
    Mierson S; Olson MM; Tietz AE
    J Neurophysiol; 1996 Aug; 76(2):1297-309. PubMed ID: 8871237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic AMP-and beta-agonist-activated chloride conductance of a toad skin epithelium.
    Willumsen NJ; Vestergaard L; Larsen EH
    J Physiol; 1992 Apr; 449():641-53. PubMed ID: 1326049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane current underlying muscarinic cholinergic excitation of motoneurons in lobster cardiac ganglion.
    Freschi JE; Livengood DR
    J Neurophysiol; 1989 Oct; 62(4):984-95. PubMed ID: 2681563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fish gill respiratory cells in culture: a new model for Cl(-)-secreting epithelia.
    Avella M; Ehrenfeld J
    J Membr Biol; 1997 Mar; 156(1):87-97. PubMed ID: 9070467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypo-osmotic challenge stimulates transepithelial K+ secretion and activates apical IsK channel in vestibular dark cells.
    Wangemann P; Liu J; Shen Z; Shipley A; Marcus DC
    J Membr Biol; 1995 Oct; 147(3):263-73. PubMed ID: 8558592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.