These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 21679716)

  • 21. Analysis of DNA topoisomers, knots, and catenanes by agarose gel electrophoresis.
    Levene SD
    Methods Mol Biol; 2009; 582():11-25. PubMed ID: 19763938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Processive recombination by wild-type gin and an enhancer-independent mutant. Insight into the mechanisms of recombination selectivity and strand exchange.
    Crisona NJ; Kanaar R; Gonzalez TN; Zechiedrich EL; Klippel A; Cozzarelli NR
    J Mol Biol; 1994 Oct; 243(3):437-57. PubMed ID: 7966272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Communications between distant sites on supercoiled DNA from non-exponential kinetics for DNA synapsis by resolvase.
    Oram M; Marko JF; Halford SE
    J Mol Biol; 1997 Jul; 270(3):396-412. PubMed ID: 9237906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-induced local DNA bends regulate global topology of recombination products.
    Du Q; Livshits A; Kwiatek A; Jayaram M; Vologodskii A
    J Mol Biol; 2007 Apr; 368(1):170-82. PubMed ID: 17337001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-range effects in a supercoiled DNA domain generated by transcription in vitro.
    Wang Z; Dröge P
    J Mol Biol; 1997 Aug; 271(4):499-510. PubMed ID: 9281422
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Random walk models for DNA synapsis by resolvase.
    Sessions RB; Oram M; Szczelkun MD; Halford SE
    J Mol Biol; 1997 Jul; 270(3):413-25. PubMed ID: 9237907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the structure of dimeric DNA catenanes by electron microscopy.
    Levene SD; Donahue C; Boles TC; Cozzarelli NR
    Biophys J; 1995 Sep; 69(3):1036-45. PubMed ID: 8519958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-control in DNA site-specific recombination mediated by the tyrosine recombinase TnpI.
    Vanhooff V; Galloy C; Agaisse H; Lereclus D; Révet B; Hallet B
    Mol Microbiol; 2006 May; 60(3):617-29. PubMed ID: 16629665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemical topology: applications to DNA recombination and replication.
    Wasserman SA; Cozzarelli NR
    Science; 1986 May; 232(4753):951-60. PubMed ID: 3010458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The topological mechanism of phage lambda integrase.
    Crisona NJ; Weinberg RL; Peter BJ; Sumners DW; Cozzarelli NR
    J Mol Biol; 1999 Jun; 289(4):747-75. PubMed ID: 10369759
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential control of transcription-induced and overall DNA supercoiling by eukaryotic topoisomerases in vitro.
    Wang Z; Dröge P
    EMBO J; 1996 Feb; 15(3):581-9. PubMed ID: 8599941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Knot what we thought before: the twisted story of replication.
    Postow L; Peter BJ; Cozzarelli NR
    Bioessays; 1999 Oct; 21(10):805-8. PubMed ID: 10497329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. No braiding of Holliday junctions in positively supercoiled DNA molecules.
    Sun W; Mao C; Iwasaki H; Kemper B; Seeman NC
    J Mol Biol; 1999 Dec; 294(3):683-99. PubMed ID: 10610789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peptide inhibitors of DNA cleavage by tyrosine recombinases and topoisomerases.
    Klemm M; Cheng C; Cassell G; Shuman S; Segall AM
    J Mol Biol; 2000 Jun; 299(5):1203-16. PubMed ID: 10873446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models.
    Liu Z; Chan HS
    J Chem Phys; 2008 Apr; 128(14):145104. PubMed ID: 18412482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic rearrangement of DNA induces knots with a unique topology: implications for the mechanism of synapsis and crossing-over.
    Griffith JD; Nash HA
    Proc Natl Acad Sci U S A; 1985 May; 82(10):3124-8. PubMed ID: 3159013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Description of the topological entanglement of DNA catenanes and knots by a powerful method involving strand passage and recombination.
    White JH; Millett KC; Cozzarelli NR
    J Mol Biol; 1987 Oct; 197(3):585-603. PubMed ID: 3441012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of the stereostructure of the product of Tn3 resolvase by a general method.
    Wasserman SA; Cozzarelli NR
    Proc Natl Acad Sci U S A; 1985 Feb; 82(4):1079-83. PubMed ID: 2983329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geometry and physics of catenanes applied to the study of DNA replication.
    Laurie B; Katritch V; Sogo J; Koller T; Dubochet J; Stasiak A
    Biophys J; 1998 Jun; 74(6):2815-22. PubMed ID: 9635735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Topological structure of DNA knots and catenanes.
    Dröge P; Cozzarelli NR
    Methods Enzymol; 1992; 212():120-30. PubMed ID: 1518444
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.