BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21679732)

  • 1. SNP genotyping through the melting analysis of unlabelled oligonucleotide applied on dilute PCR amplicon.
    Jeong S; Yu H; Lee Y; Kim JY
    J Biotechnol; 2011 Jul; 154(4):321-5. PubMed ID: 21679732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNP genotyping by unlabeled probe melting analysis.
    Erali M; Palais R; Wittwer C
    Methods Mol Biol; 2008; 429():199-206. PubMed ID: 18695968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of restriction fragment length polymorphism, tetra primer amplification refractory mutation system PCR and unlabeled probe melting analysis for LTA+252 C>T SNP genotyping.
    Soler S; Rittore C; Touitou I; Philibert L
    Clin Chim Acta; 2011 Feb; 412(5-6):430-4. PubMed ID: 21094154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closed-tube SNP genotyping without labeled probes/a comparison between unlabeled probe and amplicon melting.
    Liew M; Seipp M; Durtschi J; Margraf RL; Dames S; Erali M; Voelkerding K; Wittwer C
    Am J Clin Pathol; 2007 Mar; 127(3):341-8. PubMed ID: 17276934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis.
    Montgomery J; Wittwer CT; Palais R; Zhou L
    Nat Protoc; 2007; 2(1):59-66. PubMed ID: 17401339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybridization probe pairs and single-labeled probes: an alternative approach for genotyping and quantification.
    Froehlich T; Geulen O
    Methods Mol Biol; 2008; 429():117-33. PubMed ID: 18695963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cost-effective high-resolution melting approach using the EvaGreen dye for DNA polymorphism detection and genotyping in plants.
    Li YD; Chu ZZ; Liu XG; Jing HC; Liu YG; Hao DY
    J Integr Plant Biol; 2010 Dec; 52(12):1036-42. PubMed ID: 21106003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput genotyping of mannose-binding lectin variants using high-resolution DNA-melting analysis.
    Vossen RH; van Duijn M; Daha MR; den Dunnen JT; Roos A
    Hum Mutat; 2010 Apr; 31(4):E1286-93. PubMed ID: 20127985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of high-resolution melting to large-scale, high-throughput SNP genotyping: a comparison with the TaqMan method.
    Martino A; Mancuso T; Rossi AM
    J Biomol Screen; 2010 Jul; 15(6):623-9. PubMed ID: 20371868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal quenching probe system: flexible, specific, and cost-effective real-time polymerase chain reaction method.
    Tani H; Miyata R; Ichikawa K; Morishita S; Kurata S; Nakamura K; Tsuneda S; Sekiguchi Y; Noda N
    Anal Chem; 2009 Jul; 81(14):5678-85. PubMed ID: 19530673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct genotyping of single nucleotide polymorphisms in methyl metabolism genes using probe-free high-resolution melting analysis.
    Kristensen LS; Dobrovic A
    Cancer Epidemiol Biomarkers Prev; 2008 May; 17(5):1240-7. PubMed ID: 18483346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCR amplification on magnetic nanoparticles: application for high-throughput single nucleotide polymorphism genotyping.
    Liu H; Li S; Wang Z; Hou P; He Q; He N
    Biotechnol J; 2007 Apr; 2(4):508-11. PubMed ID: 17285677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The possibility of a valuable resource of circulating DNA for single nucleotide polymorphisms genotyping: the application of a rapid and simple polymerase chain reaction with melting curve analysis for methyltetrahydrofolate reductase polymorphisms.
    Mori S; Sugahara K; Uemura A; Yamada Y; Uzihara K; Hayashida H; Ideguchi T; Ishibashi K; Nakazato M; Maeda T; Takamura N; Kamihira S
    Lab Hematol; 2007; 13(1):1-5. PubMed ID: 17353175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent microsphere-based readout technology for multiplexed human single nucleotide polymorphism analysis and bacterial identification.
    Ye F; Li MS; Taylor JD; Nguyen Q; Colton HM; Casey WM; Wagner M; Weiner MP; Chen J
    Hum Mutat; 2001 Apr; 17(4):305-16. PubMed ID: 11295829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closed-tube genotyping with unlabeled oligonucleotide probes and a saturating DNA dye.
    Zhou L; Myers AN; Vandersteen JG; Wang L; Wittwer CT
    Clin Chem; 2004 Aug; 50(8):1328-35. PubMed ID: 15166111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of single-nucleotide polymorphism allele frequency by alternately binding probe competitive polymerase chain reaction.
    Noda N; Tani H; Morita N; Kurata S; Nakamura K; Kanagawa T; Tsuneda S; Sekiguchi Y
    Anal Chim Acta; 2008 Feb; 608(2):211-6. PubMed ID: 18215653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative quantitation of restriction fragment length polymorphic DNAs via DNA melting analysis provides an effective way to determine allele frequencies.
    Yu H; Koo I; Jeong S
    Genomics; 2009 Nov; 94(5):355-61. PubMed ID: 19686835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unlabeled oligonucleotides as internal temperature controls for genotyping by amplicon melting.
    Seipp MT; Durtschi JD; Liew MA; Williams J; Damjanovich K; Pont-Kingdon G; Lyon E; Voelkerding KV; Wittwer CT
    J Mol Diagn; 2007 Jul; 9(3):284-9. PubMed ID: 17591926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-temperature LATE-PCR endpoint genotyping.
    Sanchez JA; Abramowitz JD; Salk JJ; Reis AH; Rice JE; Pierce KE; Wangh LJ
    BMC Biotechnol; 2006 Dec; 6():44. PubMed ID: 17144924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry.
    Iannone MA; Taylor JD; Chen J; Li MS; Rivers P; Slentz-Kesler KA; Weiner MP
    Cytometry; 2000 Feb; 39(2):131-40. PubMed ID: 10679731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.