These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 21680181)
1. The effect of fire retardants on combustion and pyrolysis of sugar-cane bagasse. Griffin GJ Bioresour Technol; 2011 Sep; 102(17):8199-204. PubMed ID: 21680181 [TBL] [Abstract][Full Text] [Related]
2. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. Ounas A; Aboulkas A; El Harfi K; Bacaoui A; Yaacoubi A Bioresour Technol; 2011 Dec; 102(24):11234-8. PubMed ID: 22004591 [TBL] [Abstract][Full Text] [Related]
3. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Munir S; Daood SS; Nimmo W; Cunliffe AM; Gibbs BM Bioresour Technol; 2009 Feb; 100(3):1413-8. PubMed ID: 18829303 [TBL] [Abstract][Full Text] [Related]
4. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash. Keown DM; Favas G; Hayashi J; Li CZ Bioresour Technol; 2005 Sep; 96(14):1570-7. PubMed ID: 15978989 [TBL] [Abstract][Full Text] [Related]
5. Pyrolysis of flame retardant brominated polyester composites. Cunliffe AM; Williams PT Environ Technol; 2004 Dec; 25(12):1349-56. PubMed ID: 15691195 [TBL] [Abstract][Full Text] [Related]
7. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. Chen X; Jiang Y; Jiao C J Hazard Mater; 2014 Feb; 266():114-21. PubMed ID: 24389005 [TBL] [Abstract][Full Text] [Related]
8. Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites. Trindade WG; Hoareau W; Megiatto JD; Razera IA; Castellan A; Frollini E Biomacromolecules; 2005; 6(5):2485-96. PubMed ID: 16153084 [TBL] [Abstract][Full Text] [Related]
9. Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis. Islam MR; Parveen M; Haniu H Bioresour Technol; 2010 Jun; 101(11):4162-8. PubMed ID: 20133132 [TBL] [Abstract][Full Text] [Related]
10. Development of Novel Polyamide 11 Multifilaments and Fabric Structures Based on Industrial Lignin and Zinc Phosphinate as Flame Retardants. Mandlekar N; Cayla A; Rault F; Giraud S; Salaün F; Guan J Molecules; 2020 Oct; 25(21):. PubMed ID: 33121036 [TBL] [Abstract][Full Text] [Related]
11. Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials. Fang G; Li H; Chen Z; Liu X J Hazard Mater; 2010 Sep; 181(1-3):1004-9. PubMed ID: 20554381 [TBL] [Abstract][Full Text] [Related]
12. Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Rabelo SC; Carrere H; Maciel Filho R; Costa AC Bioresour Technol; 2011 Sep; 102(17):7887-95. PubMed ID: 21689929 [TBL] [Abstract][Full Text] [Related]
13. Thermal Degradation and Fire Properties of Fungal Mycelium and Mycelium - Biomass Composite Materials. Jones M; Bhat T; Kandare E; Thomas A; Joseph P; Dekiwadia C; Yuen R; John S; Ma J; Wang CH Sci Rep; 2018 Dec; 8(1):17583. PubMed ID: 30514955 [TBL] [Abstract][Full Text] [Related]
14. Biochar from anaerobically digested sugarcane bagasse. Inyang M; Gao B; Pullammanappallil P; Ding W; Zimmerman AR Bioresour Technol; 2010 Nov; 101(22):8868-72. PubMed ID: 20634061 [TBL] [Abstract][Full Text] [Related]
15. One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams. Davis R; Li YC; Gervasio M; Luu J; Kim YS ACS Appl Mater Interfaces; 2015 Mar; 7(11):6082-92. PubMed ID: 25723711 [TBL] [Abstract][Full Text] [Related]
16. New process for fungal delignification of sugar-cane bagasse and simultaneous production of laccase in a vapor phase bioreactor. Meza JC; Sigoillot JC; Lomascolo A; Navarro D; Auria R J Agric Food Chem; 2006 May; 54(11):3852-8. PubMed ID: 16719506 [TBL] [Abstract][Full Text] [Related]
17. Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Hernández-Salas JM; Villa-Ramírez MS; Veloz-Rendón JS; Rivera-Hernández KN; González-César RA; Plascencia-Espinosa MA; Trejo-Estrada SR Bioresour Technol; 2009 Feb; 100(3):1238-45. PubMed ID: 19000863 [TBL] [Abstract][Full Text] [Related]
18. Thermal conductivity and combustion properties of wheat gluten foams. Blomfeldt TO; Nilsson F; Holgate T; Xu J; Johansson E; Hedenqvist MS ACS Appl Mater Interfaces; 2012 Mar; 4(3):1629-35. PubMed ID: 22332837 [TBL] [Abstract][Full Text] [Related]
19. [Utilization of sugar cane bagasse hydrolysates for xylitol production by yeast]. Zhang HR; Zeng JZ; He CX; Fang H; Cai AH Sheng Wu Gong Cheng Xue Bao; 2002 Nov; 18(6):724-8. PubMed ID: 12674644 [TBL] [Abstract][Full Text] [Related]
20. High temperature and fire behavior of hydrothermally modified wood impregnated with carbon nanomaterials. Song K; Ganguly I; Eastin I; Dichiara A J Hazard Mater; 2020 Feb; 384():121283. PubMed ID: 31585295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]