BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2168019)

  • 1. Hormonal control of Mg2+ transport in the heart.
    Romani A; Scarpa A
    Nature; 1990 Aug; 346(6287):841-4. PubMed ID: 2168019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell magnesium transport and homeostasis: role of intracellular compartments.
    Romani A; Marfella C; Scarpa A
    Miner Electrolyte Metab; 1993; 19(4-5):282-9. PubMed ID: 8264515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of extracellular magnesium and beta adrenergic stimulation on contractile force and magnesium mobilization in the isolated rat heart.
    Howarth FC; Waring J; Hustler BI; Singh J
    Magnes Res; 1994 Dec; 7(3-4):187-97. PubMed ID: 7786682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cAMP control of Mg2+ homeostasis in heart and liver cells.
    Romani A; Scarpa A
    Magnes Res; 1992 Jun; 5(2):131-7. PubMed ID: 1327052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of intracellular free Mg2+ concentration in isolated rat hearts via beta-adrenergic and muscarinic receptors.
    Watanabe J; Nakayama S; Matsubara T; Hotta N
    J Mol Cell Cardiol; 1998 Nov; 30(11):2307-18. PubMed ID: 9925367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amiloride-sensitive net Mg2+ efflux from isolated perfused rat hearts.
    Vormann J; Günther T
    Magnesium; 1987; 6(4):220-4. PubMed ID: 3669732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New perspectives on the role of magnesium in the pathophysiology of the cardiovascular system. II. Experimental aspects.
    Altura BM; Altura BT
    Magnesium; 1985; 4(5-6):245-71. PubMed ID: 3914581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between total and free cellular Mg(2+) during metabolic stimulation of rat cardiac myocytes and perfused hearts.
    Fatholahi M; LaNoue K; Romani A; Scarpa A
    Arch Biochem Biophys; 2000 Feb; 374(2):395-401. PubMed ID: 10666323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium transport systems in cardiac sarcolemma and their regulation by the second messengers cyclic AMP and calcium-calmodulin.
    Lamers JM
    Gen Physiol Biophys; 1985 Apr; 4(2):143-54. PubMed ID: 2993098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence against norepinephrine-stimulated efflux of mitochondrial Mg2+ from intact cardiac myocytes.
    Altschuld RA; Jung DW; Phillips RM; Narayan P; Castillo LC; Whitaker TE; Hensley J; Hohl CM; Brierley GP
    Am J Physiol; 1994 Mar; 266(3 Pt 2):H1103-11. PubMed ID: 8160813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of magnesium uptake and release in the heart and in isolated ventricular myocytes.
    Romani A; Marfella C; Scarpa A
    Circ Res; 1993 Jun; 72(6):1139-48. PubMed ID: 8495544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of glucose in modulating Mg2+ homeostasis in liver cells from starved rats.
    Torres LM; Youngner J; Romani A
    Am J Physiol Gastrointest Liver Physiol; 2005 Feb; 288(2):G195-206. PubMed ID: 15647605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trypanosoma cruzi: effects of infection on receptor-mediated chronotropy and Ca2+ mobilization in rat cardiac myocytes.
    Bergdolt BA; Tanowitz HB; Wittner M; Morris SA; Bilezikian JP; Moreno AP; Spray DC
    Exp Parasitol; 1994 Mar; 78(2):149-60. PubMed ID: 8119371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
    Yaniv Y; Stanley WC; Saidel GM; Cabrera ME; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():69-78. PubMed ID: 18375579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Norepinephrine stimulation of pineal cyclic AMP response element-binding protein phosphorylation: primary role of a beta-adrenergic receptor/cyclic AMP mechanism.
    Roseboom PH; Klein DC
    Mol Pharmacol; 1995 Mar; 47(3):439-49. PubMed ID: 7700241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hormonal regulation of magnesium uptake: differential coupling of membrane receptors to magnesium uptake.
    Maguire ME
    Magnesium; 1987; 6(4):180-91. PubMed ID: 2823011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of intracellular calcium concentrations by calcium and magnesium in cardioplegic solutions protects rat neonatal myocytes from simulated ischemia.
    Ichiba T; Matsuda N; Takemoto N; Ishiguro S; Kuroda H; Mori T
    J Mol Cell Cardiol; 1998 Jun; 30(6):1105-14. PubMed ID: 9689585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Contribution of the Mg2+-, ATP- AND Na+-dependent Ca2+-transport systems to the regulation of Ca2+ concentration in myometrial cells].
    Kosterin CA; Kurskiĭ MD; Zimina VP; Fomin VP; Bratkova NF
    Biokhimiia; 1984 Jan; 49(1):12-9. PubMed ID: 6704445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Norepinephrine evokes a marked Mg2+ efflux from liver cells.
    Romani A; Scarpa A
    FEBS Lett; 1990 Aug; 269(1):37-40. PubMed ID: 2167243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular ATP induces Ca2+ transients in cardiac myocytes which are potentiated by norepinephrine.
    De Young MB; Scarpa A
    FEBS Lett; 1987 Oct; 223(1):53-8. PubMed ID: 2822481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.