These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21680452)

  • 1. Evolution of physiological tolerance and performance during freshwater invasions.
    Lee CE; Remfert JL; Gelembiuk GW
    Integr Comp Biol; 2003 Jul; 43(3):439-49. PubMed ID: 21680452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response to selection and evolvability of invasive populations.
    Lee CE; Remfert JL; Chang YM
    Genetica; 2007 Feb; 129(2):179-92. PubMed ID: 16915512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genotype-by-environment interaction for salinity tolerance in the freshwater-invading copepod Eurytemora affinis.
    Lee CE; Petersen CH
    Physiol Biochem Zool; 2002; 75(4):335-44. PubMed ID: 12324889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of developmental acclimation on adult salinity tolerance in the freshwater-invading copepod Eurytemora affinis.
    Lee CE; Petersen CH
    Physiol Biochem Zool; 2003; 76(3):296-301. PubMed ID: 12905115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid evolution of genome-wide gene expression and plasticity during saline to freshwater invasions by the copepod Eurytemora affinis species complex.
    Posavi M; Gulisija D; Munro JB; Silva JC; Lee CE
    Mol Ecol; 2020 Dec; 29(24):4835-4856. PubMed ID: 33047351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid evolution of body fluid regulation following independent invasions into freshwater habitats.
    Lee CE; Posavi M; Charmantier G
    J Evol Biol; 2012 Apr; 25(4):625-33. PubMed ID: 22296332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasting in fresh water: impacts of food concentration on freshwater tolerance and the evolution of food × salinity response during the expansion from saline into fresh water habitats.
    Lee CE; Moss WE; Olson N; Chau KF; Chang YM; Johnson KE
    Evol Appl; 2013 Jun; 6(4):673-89. PubMed ID: 23789033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing for beneficial reversal of dominance during salinity shifts in the invasive copepod Eurytemora affinis, and implications for the maintenance of genetic variation.
    Posavi M; Gelembiuk GW; Larget B; Lee CE
    Evolution; 2014 Nov; 68(11):3166-83. PubMed ID: 25135455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions.
    Lee CE; Kiergaard M; Gelembiuk GW; Eads BD; Posavi M
    Evolution; 2011 Aug; 65(8):2229-44. PubMed ID: 21790571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RAPID AND REPEATED INVASIONS OF FRESH WATER BY THE COPEPOD EURYTEMORA AFFINIS.
    Lee CE
    Evolution; 1999 Oct; 53(5):1423-1434. PubMed ID: 28565555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary mechanisms of habitat invasions, using the copepod Eurytemora affinis as a model system.
    Lee CE
    Evol Appl; 2016 Jan; 9(1):248-70. PubMed ID: 27087851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Legs Have It: In Situ Expression of Ion Transporters V-Type H(+)-ATPase and Na(+)/K(+)-ATPase in the Osmoregulatory Leg Organs of the Invading Copepod Eurytemora affinis.
    Gerber L; Lee CE; Grousset E; Blondeau-Bidet E; Boucheker NB; Lorin-Nebel C; Charmantier-Daures M; Charmantier G
    Physiol Biochem Zool; 2016; 89(3):233-50. PubMed ID: 27153133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life-history responses to changing temperature and salinity of the Baltic Sea copepod
    Karlsson K; Puiac S; Winder M
    Mar Biol; 2018; 165(2):30. PubMed ID: 29391649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise.
    Agha M; Ennen JR; Bower DS; Nowakowski AJ; Sweat SC; Todd BD
    Biol Rev Camb Philos Soc; 2018 Aug; 93(3):1634-1648. PubMed ID: 29575680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local adaptation of an anuran amphibian to osmotically stressful environments.
    Gomez-Mestre I; Tejedo M
    Evolution; 2003 Aug; 57(8):1889-99. PubMed ID: 14503630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion Transporter Gene Families as Physiological Targets of Natural Selection During Salinity Transitions in a Copepod.
    Lee CE
    Physiology (Bethesda); 2021 Nov; 36(6):335-349. PubMed ID: 34704854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod Eurytemora affinis.
    Winkler G; Dodson JJ; Lee CE
    Mol Ecol; 2008 Jan; 17(1):415-30. PubMed ID: 17868296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in salinity tolerance between and within anadromous subpopulations of pike (Esox 1ucius).
    Sunde J; Tamario C; Tibblin P; Larsson P; Forsman A
    Sci Rep; 2018 Jan; 8(1):22. PubMed ID: 29311634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation as a potential response to sea-level rise: a genetic basis for salinity tolerance in populations of a coastal marsh fish.
    Purcell KM; Hitch AT; Klerks PL; Leberg PL
    Evol Appl; 2008 Feb; 1(1):155-60. PubMed ID: 25567498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.
    Ewe SM; Sternberg Lda S; Childers DL
    Oecologia; 2007 Jul; 152(4):607-16. PubMed ID: 17436024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.