These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21680455)

  • 1. Environmental variation and selection on performance curves.
    Kingsolver JG; Gomulkiewicz R
    Integr Comp Biol; 2003 Jul; 43(3):470-7. PubMed ID: 21680455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity of size and growth in fluctuating thermal environments: comparing reaction norms and performance curves.
    Kingsolver JG; Izem R; Ragland GJ
    Integr Comp Biol; 2004 Dec; 44(6):450-60. PubMed ID: 21676731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relating environmental variation to selection on reaction norms: an experimental test.
    Kingsolver JG; Massie KR; Shlichta JG; Smith MH; Ragland GJ; Gomulkiewicz R
    Am Nat; 2007 Feb; 169(2):163-74. PubMed ID: 17211801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative genetics of continuous reaction norms: thermal sensitivity of caterpillar growth rates.
    Kingsolver JG; Ragland GJ; Shlichta JG
    Evolution; 2004 Jul; 58(7):1521-9. PubMed ID: 15341154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feeding, growth, and the thermal environment of cabbage white caterpillars, Pieris rapae L.
    Kingsolver JG
    Physiol Biochem Zool; 2000; 73(5):621-8. PubMed ID: 11073798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in continuous reaction norms: quantifying directions of biological interest.
    Izem R; Kingsolver JG
    Am Nat; 2005 Aug; 166(2):277-89. PubMed ID: 16032579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal variation, thermal extremes and the physiological performance of individuals.
    Dowd WW; King FA; Denny MW
    J Exp Biol; 2015 Jun; 218(Pt 12):1956-67. PubMed ID: 26085672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation, selection and evolution of function-valued traits.
    Kingsolver JG; Gomulkiewicz R; Carter PA
    Genetica; 2001; 112-113():87-104. PubMed ID: 11838789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EVOLUTION OF SPRINT SPEED IN LACERTID LIZARDS: MORPHOLOGICAL, PHYSIOLOGICAL, AND BEHAVIORAL COVARIATION.
    Bauwens D; Garland T; Castilla AM; Van Damme R
    Evolution; 1995 Oct; 49(5):848-863. PubMed ID: 28564867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Countergradient variation in locomotor performance of two sympatric Polynesian skinks (Emoia impar, Emoia cyanura).
    McElroy MT
    Physiol Biochem Zool; 2014; 87(2):222-30. PubMed ID: 24642540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic variation, simplicity, and evolutionary constraints for function-valued traits.
    Kingsolver JG; Heckman N; Zhang J; Carter PA; Knies JL; Stinchcombe JR; Meyer K
    Am Nat; 2015 Jun; 185(6):E166-81. PubMed ID: 25996868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex-specific thermal sensitivities of performance and activity in the asian house gecko, Hemidactylus frenatus.
    Cameron SF; Wheatley R; Wilson RS
    J Comp Physiol B; 2018 Jul; 188(4):635-647. PubMed ID: 29460146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal preference and performance in a sub-Antarctic caterpillar: A test of the coadaptation hypothesis and its alternatives.
    Haupt TM; Sinclair BJ; Chown SL
    J Insect Physiol; 2017 Apr; 98():108-116. PubMed ID: 28034677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Biokinetic Spectrum for Temperature and optimal Darwinian fitness.
    Corkrey R; Macdonald C; McMeekin T
    J Theor Biol; 2019 Feb; 462():171-183. PubMed ID: 30385312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy.
    Dell AI; Pawar S; Savage VM
    J Anim Ecol; 2014 Jan; 83(1):70-84. PubMed ID: 23692182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological Impacts of Thermal Extremes: Mechanisms and Costs of Functional Responses Matter.
    Williams CM; Buckley LB; Sheldon KS; Vickers M; Pörtner HO; Dowd WW; Gunderson AR; Marshall KE; Stillman JH
    Integr Comp Biol; 2016 Jul; 56(1):73-84. PubMed ID: 27252194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal performance across levels of biological organization.
    Rezende EL; Bozinovic F
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180549. PubMed ID: 31203764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predation changes the shape of thermal performance curves for population growth rate.
    Luhring TM; DeLong JP
    Curr Zool; 2016 Oct; 62(5):501-505. PubMed ID: 29491939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal Performance Curves Reveal Variation in the Seasonal Niche of a Short-Lived Annual.
    Hereford J
    Integr Comp Biol; 2017 Nov; 57(5):1010-1020. PubMed ID: 28992215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing thermal performance curves across traits: how consistent are they?
    Kellermann V; Chown SL; Schou MF; Aitkenhead I; Janion-Scheepers C; Clemson A; Scott MT; Sgrò CM
    J Exp Biol; 2019 Jun; 222(Pt 11):. PubMed ID: 31085593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.