BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 21680735)

  • 61. Acute exercise increases brain region-specific expression of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins.
    Takimoto M; Hamada T
    J Appl Physiol (1985); 2014 May; 116(9):1238-50. PubMed ID: 24610532
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Expression and cellular localization of monocarboxylate transporters (MCT2, MCT7, and MCT8) along the cattle gastrointestinal tract.
    Kirat D; Sallam KI; Kato S
    Cell Tissue Res; 2013 Jun; 352(3):585-98. PubMed ID: 23417128
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Distribution of monocarboxylate transporters MCT1-MCT8 in rat tissues and human skeletal muscle.
    Bonen A; Heynen M; Hatta H
    Appl Physiol Nutr Metab; 2006 Feb; 31(1):31-9. PubMed ID: 16604139
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Carbonic anhydrase inhibitors. Interaction of isozymes I, II, IV, V, and IX with carboxylates.
    Innocenti A; Vullo D; Scozzafava A; Casey JR; Supuran C
    Bioorg Med Chem Lett; 2005 Feb; 15(3):573-8. PubMed ID: 15664815
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Regulation of the human NBC3 Na+/HCO3- cotransporter by carbonic anhydrase II and PKA.
    Loiselle FB; Morgan PE; Alvarez BV; Casey JR
    Am J Physiol Cell Physiol; 2004 Jun; 286(6):C1423-33. PubMed ID: 14736710
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Quantum chemical QSAR models to distinguish between inhibitory activities of sulfonamides against human carbonic anhydrases I and II and bovine IV isozymes.
    Deeb O; Goodarzi M; Khadikar PV
    Chem Biol Drug Des; 2012 Apr; 79(4):514-22. PubMed ID: 22181786
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain.
    Rafiki A; Boulland JL; Halestrap AP; Ottersen OP; Bergersen L
    Neuroscience; 2003; 122(3):677-88. PubMed ID: 14622911
    [TBL] [Abstract][Full Text] [Related]  

  • 68. GC-MS determination of nitrous anhydrase activity of bovine and human carbonic anhydrase II and IV.
    Hanff E; Zinke M; Böhmer A; Niebuhr J; Maassen M; Endeward V; Maassen N; Tsikas D
    Anal Biochem; 2018 Jun; 550():132-136. PubMed ID: 29729279
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers.
    Sterling D; Reithmeier RA; Casey JR
    J Biol Chem; 2001 Dec; 276(51):47886-94. PubMed ID: 11606574
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Inhibition of carbonic anhydrase prevents the Na(+)/H(+) exchanger 1-dependent slow force response to rat myocardial stretch.
    Vargas LA; Díaz RG; Swenson ER; Pérez NG; Álvarez BV
    Am J Physiol Heart Circ Physiol; 2013 Jul; 305(2):H228-37. PubMed ID: 23709596
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Expression of MCT1, MCT2 and MCT4 in the rumen, small intestine and liver of reindeer (Rangifer tarandus tarandus L.).
    Koho N; Maijala V; Norberg H; Nieminen M; Pösö AR
    Comp Biochem Physiol A Mol Integr Physiol; 2005 May; 141(1):29-34. PubMed ID: 15953554
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons.
    Bröer S; Rahman B; Pellegri G; Pellerin L; Martin JL; Verleysdonk S; Hamprecht B; Magistretti PJ
    J Biol Chem; 1997 Nov; 272(48):30096-102. PubMed ID: 9374487
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Identification of the essential extracellular aspartic acids conserved in human monocarboxylate transporters 1, 2, and 4.
    Yamaguchi A; Narumi K; Furugen A; Iseki K; Kobayashi M
    Biochem Biophys Res Commun; 2020 Sep; 529(4):1061-1065. PubMed ID: 32819565
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses.
    Bergersen L; Waerhaug O; Helm J; Thomas M; Laake P; Davies AJ; Wilson MC; Halestrap AP; Ottersen OP
    Exp Brain Res; 2001 Feb; 136(4):523-34. PubMed ID: 11291733
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Expression of lactate transporters MCT1, MCT2 and CD147 in the red blood cells of three horse breeds: Finnhorse, Standardbred and Thoroughbred.
    Mykkänen AK; Pösö AR; McGowan CM; McKane SA
    Equine Vet J Suppl; 2010 Nov; (38):161-6. PubMed ID: 21059000
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Roles of monocarboxylate transporter subtypes in promotion and suppression of osteoclast differentiation and survival on bone.
    Imai H; Yoshimura K; Miyamoto Y; Sasa K; Sugano M; Chatani M; Takami M; Yamamoto M; Kamijo R
    Sci Rep; 2019 Oct; 9(1):15608. PubMed ID: 31666601
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Aluminum transport out of brain extracellular fluid is proton dependent and inhibited by mersalyl acid, suggesting mediation by the monocarboxylate transporter (MCT1).
    Ackley DC; Yokel RA
    Toxicology; 1998 May; 127(1-3):59-67. PubMed ID: 9699794
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The role of charged residues in the transmembrane helices of monocarboxylate transporter 1 and its ancillary protein basigin in determining plasma membrane expression and catalytic activity.
    Manoharan C; Wilson MC; Sessions RB; Halestrap AP
    Mol Membr Biol; 2006; 23(6):486-98. PubMed ID: 17127621
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Monocarboxylate transporters 1 and 4: expression and regulation by PPARα in ovine ruminal epithelial cells.
    Benesch F; Dengler F; Masur F; Pfannkuche H; Gäbel G
    Am J Physiol Regul Integr Comp Physiol; 2014 Dec; 307(12):R1428-37. PubMed ID: 25320343
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Immunohistochemical localization of GLUT3, MCT1, and MCT2 in the testes of mice and rats: the use of different energy sources in spermatogenesis.
    Kishimoto A; Ishiguro-Oonuma T; Takahashi R; Maekawa M; Toshimori K; Watanabe M; Iwanaga T
    Biomed Res; 2015; 36(4):225-34. PubMed ID: 26299481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.