BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 21680741)

  • 1. Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms.
    Thotsaporn K; Chenprakhon P; Sucharitakul J; Mattevi A; Chaiyen P
    J Biol Chem; 2011 Aug; 286(32):28170-80. PubMed ID: 21680741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase.
    Ruangchan N; Tongsook C; Sucharitakul J; Chaiyen P
    J Biol Chem; 2011 Jan; 286(1):223-33. PubMed ID: 21030590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen peroxide elimination from C4a-hydroperoxyflavin in a flavoprotein oxidase occurs through a single proton transfer from flavin N5 to a peroxide leaving group.
    Sucharitakul J; Wongnate T; Chaiyen P
    J Biol Chem; 2011 May; 286(19):16900-9. PubMed ID: 21454569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of C4a-hydroperoxyflavin protonation in the oxygenase component of p-hydroxyphenylacetate-3-hydroxylase.
    Chenprakhon P; Trisrivirat D; Thotsaporn K; Sucharitakul J; Chaiyen P
    Biochemistry; 2014 Jul; 53(25):4084-6. PubMed ID: 24878148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and stabilization of C4a-hydroperoxy-FAD by the Arg/Asn pair in HadA monooxygenase.
    Pimviriyakul P; Chaiyen P
    FEBS J; 2023 Jan; 290(1):176-195. PubMed ID: 35942637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii.
    Sucharitakul J; Chaiyen P; Entsch B; Ballou DP
    J Biol Chem; 2006 Jun; 281(25):17044-17053. PubMed ID: 16627482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions with the substrate phenolic group are essential for hydroxylation by the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase.
    Tongsook C; Sucharitakul J; Thotsaporn K; Chaiyen P
    J Biol Chem; 2011 Dec; 286(52):44491-502. PubMed ID: 22052902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase.
    Sucharitakul J; Phongsak T; Entsch B; Svasti J; Chaiyen P; Ballou DP
    Biochemistry; 2007 Jul; 46(29):8611-23. PubMed ID: 17595116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA.
    Shirey C; Badieyan S; Sobrado P
    J Biol Chem; 2013 Nov; 288(45):32440-32448. PubMed ID: 24072704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer.
    Visitsatthawong S; Chenprakhon P; Chaiyen P; Surawatanawong P
    J Am Chem Soc; 2015 Jul; 137(29):9363-74. PubMed ID: 26144862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The C-terminal domain of 4-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii is an autoinhibitory domain.
    Phongsak T; Sucharitakul J; Thotsaporn K; Oonanant W; Yuvaniyama J; Svasti J; Ballou DP; Chaiyen P
    J Biol Chem; 2012 Jul; 287(31):26213-22. PubMed ID: 22661720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protonation status and control mechanism of flavin-oxygen intermediates in the reaction of bacterial luciferase.
    Tinikul R; Lawan N; Akeratchatapan N; Pimviriyakul P; Chinantuya W; Suadee C; Sucharitakul J; Chenprakhon P; Ballou DP; Entsch B; Chaiyen P
    FEBS J; 2021 May; 288(10):3246-3260. PubMed ID: 33289305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxylation of 4-hydroxyphenylethylamine derivatives by R263 variants of the oxygenase component of p-hydroxyphenylacetate-3-hydroxylase.
    Chenprakhon P; Dhammaraj T; Chantiwas R; Chaiyen P
    Arch Biochem Biophys; 2017 Apr; 620():1-11. PubMed ID: 28300536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the monooxygenase component of a two-component flavoprotein monooxygenase.
    Alfieri A; Fersini F; Ruangchan N; Prongjit M; Chaiyen P; Mattevi A
    Proc Natl Acad Sci U S A; 2007 Jan; 104(4):1177-82. PubMed ID: 17227849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QM/MM Modeling of the Flavin Functionalization in the RutA Monooxygenase.
    Grigorenko B; Domratcheva T; Nemukhin A
    Molecules; 2023 Mar; 28(5):. PubMed ID: 36903648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The FMN-binding domain of cytochrome P450BM-3: resolution, reconstitution, and flavin analogue substitution.
    Haines DC; Sevrioukova IF; Peterson JA
    Biochemistry; 2000 Aug; 39(31):9419-29. PubMed ID: 10924137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reductase of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii requires p-hydroxyphenylacetate for effective catalysis.
    Sucharitakul J; Chaiyen P; Entsch B; Ballou DP
    Biochemistry; 2005 Aug; 44(30):10434-42. PubMed ID: 16042421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺.
    Robinson R; Badieyan S; Sobrado P
    Biochemistry; 2013 Dec; 52(51):9089-91. PubMed ID: 24321106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the mechanism of p-hydroxyphenylacetate 3-hydroxylase from Pseudomonas aeruginosa: a system composed of a small flavin reductase and a large flavin-dependent oxygenase.
    Chakraborty S; Ortiz-Maldonado M; Entsch B; Ballou DP
    Biochemistry; 2010 Jan; 49(2):372-85. PubMed ID: 20000468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.