These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 21680823)
61. Plant transposable elements: their role in evolution. Saedler H Biosci Rep; 1988 Dec; 8(6):585-8. PubMed ID: 2853982 [TBL] [Abstract][Full Text] [Related]
62. IBI series winner. Aipotu: simulation from nucleotides to populations and back again. White BT Science; 2012 Jul; 337(6093):424-5. PubMed ID: 22837517 [No Abstract] [Full Text] [Related]
63. Restructuring the genome in response to adaptive challenge: McClintock's bold conjecture revisited. Jorgensen RA Cold Spring Harb Symp Quant Biol; 2004; 69():349-54. PubMed ID: 16117667 [No Abstract] [Full Text] [Related]
65. Plant genomics: an overview. Campos-de Quiroz H Biol Res; 2002; 35(3-4):385-99. PubMed ID: 12462991 [TBL] [Abstract][Full Text] [Related]
66. Mutation and mutation screening. Lee LS; Till BJ; Hill H; Huynh OA; Jankowicz-Cieslak J Methods Mol Biol; 2014; 1099():77-95. PubMed ID: 24243197 [TBL] [Abstract][Full Text] [Related]
67. Can plant transposable elements generate novel regulatory systems? Schwarz-Sommer Z; Saedler H Mol Gen Genet; 1987 Sep; 209(2):207-9. PubMed ID: 17191336 [No Abstract] [Full Text] [Related]
68. Editorial Overview: Genome studies and molecular genetics: Genomic approaches to understanding evolution, development and the plant phenome. Bomblies K; Loudet O Curr Opin Plant Biol; 2014 Apr; 18():v-vi. PubMed ID: 24685907 [No Abstract] [Full Text] [Related]
69. The wondrous cycles of polyploidy in plants. Wendel JF Am J Bot; 2015 Nov; 102(11):1753-6. PubMed ID: 26451037 [No Abstract] [Full Text] [Related]
70. How important are transposons for plant evolution? Lisch D Nat Rev Genet; 2013 Jan; 14(1):49-61. PubMed ID: 23247435 [TBL] [Abstract][Full Text] [Related]
71. Goodbye to 'one by one' genetics. Theologis A Genome Biol; 2001; 2(4):COMMENT2004. PubMed ID: 11305933 [TBL] [Abstract][Full Text] [Related]
72. Retroelements in higher plants. Grandbastien MA Trends Genet; 1992 Mar; 8(3):103-8. PubMed ID: 1315992 [TBL] [Abstract][Full Text] [Related]
73. Plant transposable elements. A hard act to follow. Wessler SR Plant Physiol; 2001 Jan; 125(1):149-51. PubMed ID: 11154320 [No Abstract] [Full Text] [Related]
74. The significance of plant transposable elements in biological processes. Schwarz-Sommer Z Results Probl Cell Differ; 1987; 14():213-21. PubMed ID: 3039624 [No Abstract] [Full Text] [Related]
76. Homology-dependent gene silencing in transgenic plants: what does it really tell us? Matzke MA; Matzke AJ Trends Genet; 1995 Jan; 11(1):1-3. PubMed ID: 7900188 [No Abstract] [Full Text] [Related]
77. The large genome constraint hypothesis: evolution, ecology and phenotype. Knight CA; Molinari NA; Petrov DA Ann Bot; 2005 Jan; 95(1):177-90. PubMed ID: 15596465 [TBL] [Abstract][Full Text] [Related]
78. Cell-cell interactions: taking cues from the neighbors. Weigel D; Doerner P Curr Biol; 1996 Jan; 6(1):10-2. PubMed ID: 8805213 [TBL] [Abstract][Full Text] [Related]
79. Hidden weapons of microbial destruction in plant genomes. Manners JM Genome Biol; 2007; 8(9):225. PubMed ID: 17903311 [TBL] [Abstract][Full Text] [Related]
80. Life at the extreme: lessons from the genome. Oh DH; Dassanayake M; Bohnert HJ; Cheeseman JM Genome Biol; 2012; 13(3):241. PubMed ID: 22390828 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]