BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 21681321)

  • 1. The phytoalexins from cultivated and wild crucifers: chemistry and biology.
    Pedras MS; Yaya EE; Glawischnig E
    Nat Prod Rep; 2011 Aug; 28(8):1381-405. PubMed ID: 21681321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation.
    Pedras MS; Okanga FI; Zaharia IL; Khan AQ
    Phytochemistry; 2000 Jan; 53(2):161-76. PubMed ID: 10680168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antiproliferative Effect of Indole Phytoalexins.
    Chripkova M; Zigo F; Mojzis J
    Molecules; 2016 Nov; 21(12):. PubMed ID: 27898039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoalexins from Brassicaceae: news from the front.
    Pedras MS; Yaya EE
    Phytochemistry; 2010 Aug; 71(11-12):1191-7. PubMed ID: 20416910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-indolyl cruciferous phytoalexins: Nasturlexins and tridentatols, a striking convergent evolution of defenses in terrestrial plants and marine animals?
    Pedras MS; To QH
    Phytochemistry; 2015 May; 113():57-63. PubMed ID: 25152450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tenualexin, other phytoalexins and indole glucosinolates from wild cruciferous species.
    Pedras MS; Yaya EE
    Chem Biodivers; 2014 Jun; 11(6):910-8. PubMed ID: 24934676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antiproliferative and cancer chemopreventive activity of phytoalexins: focus on indole phytoalexins from crucifers.
    Mezencev R; Mojzis J; Pilatova M; Kutschy P
    Neoplasma; 2003; 50(4):239-45. PubMed ID: 12937834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur-containing secondary metabolites from Arabidopsis thaliana and other Brassicaceae with function in plant immunity.
    Bednarek P
    Chembiochem; 2012 Sep; 13(13):1846-59. PubMed ID: 22807086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interrogation of biosynthetic pathways of the cruciferous phytoalexins nasturlexins with isotopically labelled compounds.
    Pedras MSC; To QH
    Org Biomol Chem; 2018 May; 16(19):3625-3638. PubMed ID: 29708249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chemical ecology of crucifers and their fungal pathogens: boosting plant defenses and inhibiting pathogen invasion.
    Pedras MS
    Chem Rec; 2008; 8(2):109-15. PubMed ID: 18383155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip.
    Pedras MS; Nycholat CM; Montaut S; Xu Y; Khan AQ
    Phytochemistry; 2002 Mar; 59(6):611-25. PubMed ID: 11867093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unveiling fungal detoxification pathways of the cruciferous phytoalexin rapalexin A: Sequential L-cysteine conjugation, acetylation and oxidative cyclization mediated by Colletotrichum spp.
    Pedras MSC; Thapa C
    Phytochemistry; 2020 Jan; 169():112188. PubMed ID: 31683228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing crucial metabolic pathways in fungal pathogens of crucifers: biotransformation of indole-3-acetaldoxime, 4-hydroxyphenylacetaldoxime, and their metabolites.
    Pedras MS; Montaut S
    Bioorg Med Chem; 2003 Jul; 11(14):3115-20. PubMed ID: 12818674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotransformation of rutabaga phytoalexins by the fungus Alternaria brassicicola: Unveiling the first hybrid metabolite derived from a phytoalexin and a fungal polyketide.
    Pedras MS; Abdoli A
    Bioorg Med Chem; 2017 Jan; 25(2):557-567. PubMed ID: 27884513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoalexins in defense against pathogens.
    Ahuja I; Kissen R; Bones AM
    Trends Plant Sci; 2012 Feb; 17(2):73-90. PubMed ID: 22209038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoalexins from the crucifer rutabaga: structures, syntheses, biosyntheses, and antifungal activity.
    Pedras MS; Montaut S; Suchy M
    J Org Chem; 2004 Jun; 69(13):4471-6. PubMed ID: 15202903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tryptophan-derived sulfur-containing phytoalexins--a general overview.
    Ruszkowska J; Wróbel JT
    Adv Exp Med Biol; 2003; 527():629-36. PubMed ID: 15206782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of the crucifer phytoalexins wasalexin A and B in the plant pathogenic fungus Leptosphaeria maculans.
    Pedras MS; Suchý M
    Org Biomol Chem; 2006 Sep; 4(18):3526-35. PubMed ID: 17036150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding the nasturlexin family: Nasturlexins C and D and their sulfoxides are phytoalexins of the crucifers Barbarea vulgaris and B. verna.
    Pedras MS; Alavi M; To QH
    Phytochemistry; 2015 Oct; 118():131-8. PubMed ID: 26318326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The "chemical defense" of plants against pathogenic microbes: Phytoalexins biosynthesis and molecular regulations].
    Wu J
    Ying Yong Sheng Tai Xue Bao; 2020 Jul; 31(7):2161-2167. PubMed ID: 32715677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.