These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21681466)

  • 1. Copper excess impairs mobilization of storage proteins in bean cotyledons.
    Karmous I; El Ferjani E; Chaoui A
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1251-9. PubMed ID: 21681466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper affects the cotyledonary carbohydrate status during the germination of bean seed.
    Sfaxi-Bousbih A; Chaoui A; El Ferjani E
    Biol Trace Elem Res; 2010 Oct; 137(1):110-6. PubMed ID: 19888556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium impairs mineral and carbohydrate mobilization during the germination of bean seeds.
    Sfaxi-Bousbih A; Chaoui A; El Ferjani E
    Ecotoxicol Environ Saf; 2010 Sep; 73(6):1123-9. PubMed ID: 20138361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of copper on reserve mobilization in embryo of Phaseolus vulgaris L.
    Karmous I; Bellani LM; Chaoui A; El Ferjani E; Muccifora S
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):10159-65. PubMed ID: 25693830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different functions of vicilin and legumin are reflected in the histopattern of globulin mobilization during germination of vetch (Vicia sativa L.).
    Tiedemann J; Neubohn B; Müntz K
    Planta; 2000 Jun; 211(1):1-12. PubMed ID: 10923698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox biology response in germinating Phaseolus vulgaris seeds exposed to copper: Evidence for differential redox buffering in seedlings and cotyledon.
    Karmous I; Trevisan R; El Ferjani E; Chaoui A; Sheehan D
    PLoS One; 2017; 12(10):e0184396. PubMed ID: 28981522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of globulin mobilization and cysteine proteinases in embryonic axes and cotyledons during germination and seedling growth of vetch (Vicia sativa L.).
    Schlereth A; Becker C; Horstmann C; Tiedemann J; Müntz K
    J Exp Bot; 2000 Aug; 51(349):1423-33. PubMed ID: 10944156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ureide metabolism during seedling development in French bean (Phaseolus vulgaris).
    Quiles FA; Raso MJ; Pineda M; Piedras P
    Physiol Plant; 2009 Jan; 135(1):19-28. PubMed ID: 19121096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Source-sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity.
    Voigt EL; Almeida TD; Chagas RM; Ponte LF; Viégas RA; Silveira JA
    J Plant Physiol; 2009 Jan; 166(1):80-9. PubMed ID: 18448194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excess copper induced physiological and proteomic changes in germinating rice seeds.
    Ahsan N; Lee DG; Lee SH; Kang KY; Lee JJ; Kim PJ; Yoon HS; Kim JS; Lee BH
    Chemosphere; 2007 Apr; 67(6):1182-93. PubMed ID: 17182080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsuitable availability of nutrients in germinating bean embryos exposed to copper excess.
    Sfaxi-Bousbih A; Chaoui A; El Ferjani E
    Biol Trace Elem Res; 2010 Jun; 135(1-3):295-303. PubMed ID: 19727572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in protein fractions, trypsin inhibitor and proteolytic activity in the cotyledons of germinating chickpea.
    Neves VA; Lourenço EJ
    Arch Latinoam Nutr; 2001 Sep; 51(3):269-75. PubMed ID: 11791480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of proteolytic enzymes in embryonic axes of germinating bean seeds under copper stress.
    Karmous I; Jaouani K; El Ferjani E; Chaoui A
    Biol Trace Elem Res; 2014 Jul; 160(1):108-15. PubMed ID: 24880256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteolytic activities in Phaseolus vulgaris cotyledons under copper stress.
    Karmous I; Khadija J; Chaoui A; El Ferjani E
    Physiol Mol Biol Plants; 2012 Oct; 18(4):337-43. PubMed ID: 24082496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of vacuolar membrane proton pumps in the acidification of protein storage vacuoles following germination.
    Wilson KA; Chavda BJ; Pierre-Louis G; Quinn A; Tan-Wilson A
    Plant Physiol Biochem; 2016 Jul; 104():242-9. PubMed ID: 27043965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in trigonelline (N-methylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds.
    Zheng XQ; Hayashibe E; Ashihara H
    J Exp Bot; 2005 Jun; 56(416):1615-23. PubMed ID: 15837705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt-induced delay in cotyledonary globulin mobilization is abolished by induction of proteases and leaf growth sink strength at late seedling establishment in cashew.
    Ponte LF; Silva AL; Carvalho FE; Maia JM; Voigt EL; Silveira JA
    J Plant Physiol; 2014 Sep; 171(15):1362-71. PubMed ID: 25046757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of the role of the major proteinases of germinated common bean (Phaseolus vulgaris L.) and soybean (Glycine max (L.) Merrill) seeds in the degradation of their storage proteins.
    Zakharov A; Carchilan M; Stepurina T; Rotari V; Wilson K; Vaintraub I
    J Exp Bot; 2004 Oct; 55(406):2241-9. PubMed ID: 15333645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment.
    Gomes-Filho E; Lima CR; Costa JH; da Silva AC; da Guia Silva Lima M; de Lacerda CF; Prisco JT
    Plant Cell Rep; 2008 Jan; 27(1):147-57. PubMed ID: 17899099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thioredoxin and germinating barley: targets and protein redox changes.
    Marx C; Wong JH; Buchanan BB
    Planta; 2003 Jan; 216(3):454-60. PubMed ID: 12520337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.