BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 21681910)

  • 41. The isolation and identification of two compounds with predominant radical scavenging activity in hempseed (seed of Cannabis sativa L.).
    Chen T; He J; Zhang J; Li X; Zhang H; Hao J; Li L
    Food Chem; 2012 Sep; 134(2):1030-7. PubMed ID: 23107724
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electron Paramagnetic Resonance Study of the Free Radical Scavenging Capacity of Curcumin and Its Demethoxy and Hydrogenated Derivatives.
    Morales NP; Sirijaroonwong S; Yamanont P; Phisalaphong C
    Biol Pharm Bull; 2015; 38(10):1478-83. PubMed ID: 26424013
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antioxidant properties of aqueous extracts from red tide plankton cultures.
    Niwano Y; Sato E; Kohno M; Matsuyama Y; Kim D; Oda T
    Biosci Biotechnol Biochem; 2007 May; 71(5):1145-53. PubMed ID: 17485850
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of scavenging capacities of vegetables by ORAC and EPR.
    Kameya H; Watanabe J; Takano-Ishikawa Y; Todoriki S
    Food Chem; 2014 Feb; 145():866-73. PubMed ID: 24128558
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis and biological evaluation of (2,5-dihydro-1H-pyrrol-1-yl)-2H-chromen-2-ones as free radical scavengers.
    Balabani A; Hadjipavlou-Litina DJ; Litinas KE; Mainou M; Tsironi CC; Vronteli A
    Eur J Med Chem; 2011 Dec; 46(12):5894-901. PubMed ID: 22000208
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of the Hydroxyl Radical-Generating System in the Estimation of the Antioxidant Activity of Plant Extracts by Electron Paramagnetic Resonance (EPR).
    Sanna D; Fadda A
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889433
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Free radical-scavenging activity of sulfurous water investigated by electron paramagnetic resonance (EPR) spectroscopy.
    Braga PC; Dal Sasso M; Culici M; Falchi M; Spallino A; Nappi G
    Exp Lung Res; 2012 Mar; 38(2):67-74. PubMed ID: 22185392
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Radical-scavenging compounds from olive tree (Olea europaea L.) wood.
    Pérez-Bonilla M; Salido S; van Beek TA; Altarejos J
    J Agric Food Chem; 2014 Jan; 62(1):144-51. PubMed ID: 24328093
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-reductive scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) by peroxyradical: a useful method for quantitative analysis of peroxyradical.
    Nishizawa M; Kohno M; Nishimura M; Kitagawa A; Niwano Y
    Chem Pharm Bull (Tokyo); 2005 Jun; 53(6):714-6. PubMed ID: 15930791
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative free radical scavenging action of angiotensin-converting enzyme inhibitors with and without the sulfhydryl radical.
    Suzuki S; Sato H; Shimada H; Takashima N; Arakawa M
    Pharmacology; 1993 Jul; 47(1):61-5. PubMed ID: 8393194
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Composition and antioxidant activity of the polysaccharides from cultivated Saussurea involucrata.
    Yao L; Zhao Q; Xiao J; Sun J; Yuan X; Zhao B; Su H; Niu S
    Int J Biol Macromol; 2012 Apr; 50(3):849-53. PubMed ID: 22120502
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Studies on the antioxidant properties of some phytoestrogens.
    Kładna A; Berczyński P; Kruk I; Piechowska T; Aboul-Enein HY
    Luminescence; 2016 Sep; 31(6):1201-6. PubMed ID: 26799817
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of venlafaxine on scavenging free radicals in vitro.
    Plachá K; Valachová K; Rapta P; Topol'ská D; Melichercíková K; Soltés L
    Neuro Endocrinol Lett; 2016; 37(1):59-64. PubMed ID: 26994387
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigation of scavenging activities and distribution of paramagnetic species in Zanthoxylum limonella seeds.
    Nakagawa K; Promjareet A; Priprem A; Netweera V; Hara H
    Free Radic Res; 2016 Dec; 50(12):1432-1440. PubMed ID: 27817252
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of different amino acid groups on the free radical scavenging capability of multi walled carbon nanotubes.
    Amiri A; Memarpoor-Yazdi M; Shanbedi M; Eshghi H
    J Biomed Mater Res A; 2013 Aug; 101(8):2219-28. PubMed ID: 23281168
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dietary chromones as antioxidant agents--the structural variable.
    Dias MM; Machado NF; Marques MP
    Food Funct; 2011 Oct; 2(10):595-602. PubMed ID: 21897966
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of the antioxidant activity of tetracycline antibiotics in vitro.
    Kładna A; Michalska T; Berczyński P; Kruk I; Aboul-Enein HY
    Luminescence; 2012; 27(4):249-55. PubMed ID: 22887986
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chlorine atom substitution influences radical scavenging activity of 6-chromanol.
    Inami K; Iizuka Y; Furukawa M; Nakanishi I; Ohkubo K; Fukuhara K; Fukuzumi S; Mochizuki M
    Bioorg Med Chem; 2012 Jul; 20(13):4049-55. PubMed ID: 22658540
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Critical Re-Evaluation of DPPH assay: Presence of Pigments Affects the Results.
    Yeo J; Shahidi F
    J Agric Food Chem; 2019 Jul; 67(26):7526-7529. PubMed ID: 31184887
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and in vitro Antioxidant Activity Study of Some Novel Substituted Piperazinyl Flavone Compounds.
    Sari E; Berczynski P; Kladna A; Kruk I; Dundar OB; Szymanska M; Aboul-Enein HY
    Med Chem; 2018; 14(4):372-386. PubMed ID: 29205120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.