BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21682268)

  • 1. Active site gating and substrate specificity of butyrylcholinesterase and acetylcholinesterase: insights from molecular dynamics simulations.
    Fang L; Pan Y; Muzyka JL; Zhan CG
    J Phys Chem B; 2011 Jul; 115(27):8797-805. PubMed ID: 21682268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico, theoretical biointerface analysis and in vitro kinetic analysis of amine compounds interaction with acetylcholinesterase and butyrylcholinesterase.
    Kandasamy S; Loganathan C; Sakayanathan P; Karthikeyan S; Stephen AD; Marimuthu DK; Ravichandran S; Sivalingam V; Thayumanavan P
    Int J Biol Macromol; 2021 Aug; 185():750-760. PubMed ID: 34216669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respective roles of the catalytic domains and C-terminal tail peptides in the oligomerization and secretory trafficking of human acetylcholinesterase and butyrylcholinesterase.
    Liang D; Blouet JP; Borrega F; Bon S; Massoulié J
    FEBS J; 2009 Jan; 276(1):94-108. PubMed ID: 19019080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in silico analysis of novel astaxanthin-s-allyl cysteine as an inhibitor of butyrylcholinesterase and various globular forms of acetylcholinesterases.
    Sakayanathan P; Loganathan C; Kandasamy S; Ramanna RV; Poomani K; Thayumanavan P
    Int J Biol Macromol; 2019 Nov; 140():1147-1157. PubMed ID: 31442505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study.
    Rosenberry TL; Brazzolotto X; Macdonald IR; Wandhammer M; Trovaslet-Leroy M; Darvesh S; Nachon F
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29186056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept) to cholinesterases.
    Saxena A; Fedorko JM; Vinayaka CR; Medhekar R; Radić Z; Taylor P; Lockridge O; Doctor BP
    Eur J Biochem; 2003 Nov; 270(22):4447-58. PubMed ID: 14622273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in active-site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase.
    Saxena A; Redman AM; Jiang X; Lockridge O; Doctor BP
    Chem Biol Interact; 1999 May; 119-120():61-9. PubMed ID: 10421439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of acetylcholinesterase and butyrylcholinesterase in the vertebrates: an atypical butyrylcholinesterase from the Medaka Oryzias latipes.
    Pezzementi L; Nachon F; Chatonnet A
    PLoS One; 2011 Feb; 6(2):e17396. PubMed ID: 21364766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of methoxy-naphthyl linked N-(1-benzylpiperidine) benzamide as a blood-brain permeable dual inhibitor of acetylcholinesterase and butyrylcholinesterase.
    Abdullaha M; Nuthakki VK; Bharate SB
    Eur J Med Chem; 2020 Dec; 207():112761. PubMed ID: 32942070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does "butyrylization" of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase?
    Kaplan D; Ordentlich A; Barak D; Ariel N; Kronman C; Velan B; Shafferman A
    Biochemistry; 2001 Jun; 40(25):7433-45. PubMed ID: 11412096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface screening, molecular modeling and in vitro studies on the interactions of aflatoxin M1 and human enzymes acetyl- and butyrylcholinesterase.
    de Almeida JSFD; Cavalcante SFA; Dolezal R; Kuca K; Musilek K; Jun D; França TCC
    Chem Biol Interact; 2019 Aug; 308():113-119. PubMed ID: 31100275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Theoretical conformational analysis in the determination of productive conformations of substrates for acetylcholinesterase and butyrylcholinesterase].
    Belinskaia DA; Shestakova NN
    Bioorg Khim; 2005; 31(5):466-73. PubMed ID: 16245689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition pathways of the potent organophosphate CBDP with cholinesterases revealed by X-ray crystallographic snapshots and mass spectrometry.
    Carletti E; Colletier JP; Schopfer LM; Santoni G; Masson P; Lockridge O; Nachon F; Weik M
    Chem Res Toxicol; 2013 Feb; 26(2):280-9. PubMed ID: 23339663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Productive substrate sorption in acetylcholinesterase and butyrylcholinesterase active sites according to theoretical conformational analysis.
    Belinskaya DA; Shestakova NN
    Dokl Biochem Biophys; 2004; 396():146-50. PubMed ID: 15378912
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural aspects of 4-aminoquinolines as reversible inhibitors of human acetylcholinesterase and butyrylcholinesterase.
    Bosak A; Opsenica DM; Šinko G; Zlatar M; Kovarik Z
    Chem Biol Interact; 2019 Aug; 308():101-109. PubMed ID: 31100281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible inhibition of acetylcholinesterase and butyrylcholinesterase by 4,4'-bipyridine and by a coumarin derivative.
    Simeon-Rudolf V; Kovarik Z; Radić Z; Reiner E
    Chem Biol Interact; 1999 May; 119-120():119-28. PubMed ID: 10421445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavonols and 4-thioflavonols as potential acetylcholinesterase and butyrylcholinesterase inhibitors: Synthesis, structure-activity relationship and molecular docking studies.
    Mughal EU; Sadiq A; Ashraf J; Zafar MN; Sumrra SH; Tariq R; Mumtaz A; Javid A; Khan BA; Ali A; Javed CO
    Bioorg Chem; 2019 Oct; 91():103124. PubMed ID: 31319297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of a butyrylcholinesterase-specific probe via a structure-based design strategy.
    Yang SH; Sun Q; Xiong H; Liu SY; Moosavi B; Yang WC; Yang GF
    Chem Commun (Camb); 2017 Apr; 53(28):3952-3955. PubMed ID: 28322391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, structure-activity relationship and molecular docking of 3-oxoaurones and 3-thioaurones as acetylcholinesterase and butyrylcholinesterase inhibitors.
    Mughal EU; Sadiq A; Murtaza S; Rafique H; Zafar MN; Riaz T; Khan BA; Hameed A; Khan KM
    Bioorg Med Chem; 2017 Jan; 25(1):100-106. PubMed ID: 27780618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors.
    Alpan AS; Parlar S; Carlino L; Tarikogullari AH; Alptüzün V; Güneş HS
    Bioorg Med Chem; 2013 Sep; 21(17):4928-37. PubMed ID: 23891231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.