These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21682290)

  • 21. Controlled precipitation of solubilized carbon nanotubes by delamination of DNA.
    Chen RJ; Zhang Y
    J Phys Chem B; 2006 Jan; 110(1):54-7. PubMed ID: 16471498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective wrapping and supramolecular structures of polyfluorene-carbon nanotube hybrids.
    Gao J; Loi MA; de Carvalho EJ; Dos Santos MC
    ACS Nano; 2011 May; 5(5):3993-9. PubMed ID: 21526767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solution structures of DNA.RNA hybrids with purine-rich and pyrimidine-rich strands: comparison with the homologous DNA and RNA duplexes.
    Gyi JI; Lane AN; Conn GL; Brown T
    Biochemistry; 1998 Jan; 37(1):73-80. PubMed ID: 9425027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dependence of single-walled carbon nanotube adsorption kinetics on temperature and binding energy.
    Rawat DS; Krungleviciute V; Heroux L; Bulut M; Calbi MM; Migone AD
    Langmuir; 2008 Dec; 24(23):13465-9. PubMed ID: 18954094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics simulations of B '-DNA: sequence effects on A-tract-induced bending and flexibility.
    McConnell KJ; Beveridge DL
    J Mol Biol; 2001 Nov; 314(1):23-40. PubMed ID: 11724529
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loosening the DNA wrapping around single-walled carbon nanotubes by increasing the strand length.
    Yang QH; Wang Q; Gale N; Oton CJ; Cui L; Nandhakumar IS; Zhu Z; Tang Z; Brown T; Loh WH
    Nanotechnology; 2009 May; 20(19):195603. PubMed ID: 19420642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics study on DNA oligonucleotide translocation through carbon nanotubes.
    Pei QX; Lim CG; Cheng Y; Gao H
    J Chem Phys; 2008 Sep; 129(12):125101. PubMed ID: 19045062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiscale modeling catalytic decomposition of hydrocarbons during carbon nanotube growth.
    Vasenkov AV; Sengupta D; Frenklach M
    J Phys Chem B; 2009 Feb; 113(7):1877-82. PubMed ID: 19173570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and characterization of adducts derived from the syn-diastereomer of benzo[a]pyrene 7,8-dihydrodiol 9,10-epoxide and the 5'-d(CCTATAGATATCC) oligonucleotide.
    Pontén I; Seidel A; Gräslund A; Jernström B
    Chem Res Toxicol; 1996; 9(1):188-96. PubMed ID: 8924590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An unexpected new optimum in the structure space of DNA solubilizing single-walled carbon nanotubes.
    Vogel SR; Kappes MM; Hennrich F; Richert C
    Chemistry; 2007; 13(6):1815-20. PubMed ID: 17133636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SWNT-DNA and SWNT-polyC hybrids: AFM study and computer modeling.
    Karachevtsev MV; Lytvyn OS; Stepanian SG; Leontiev VS; Adamowicz L; Karachevtsev VA
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1473-80. PubMed ID: 18468177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of the hydration shells of oligo(dA-dT).oligo(dA-dT) and oligo(dA).oligo(dT) tracts in B-type conformation on the basis of Monte Carlo calculations.
    Eisenhaber F; Tumanyan VG; Abagyan RA
    Biopolymers; 1990; 30(5-6):563-81. PubMed ID: 2265229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Cyclic oligonucleotides. III. Ability to form triplexes with oligodeoxyribonucleotides, consisting of mixed pyrimidine and purine sequences].
    Maksimenko AV; Gottikh MB; Volkov EM; Shabarova ZA
    Mol Biol (Mosk); 1997; 31(5):839-46. PubMed ID: 9454070
    [No Abstract]   [Full Text] [Related]  

  • 34. Conformational analysis of canonical 2-deoxyribonucleotides. 2. Purine nucleotides.
    Shishkin OV; Gorb L; Zhikol OA; Leszczynski J
    J Biomol Struct Dyn; 2004 Oct; 22(2):227-44. PubMed ID: 15317483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and studies of modified oligonucleotides-directed triple helix formation at the purine-pyrimidine interrupted site.
    Jazouli M; Guianvarc'h D; Bougrin K; Soufiaoui M; Vierling P; Benhida R
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1277-80. PubMed ID: 14565398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photopolymerized lipids self-assembly for the solubilization of carbon nanotubes.
    Contal E; Morère A; Thauvin C; Perino A; Meunier S; Mioskowski C; Wagner A
    J Phys Chem B; 2010 May; 114(17):5718-22. PubMed ID: 20380427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes.
    Heller DA; Jeng ES; Yeung TK; Martinez BM; Moll AE; Gastala JB; Strano MS
    Science; 2006 Jan; 311(5760):508-11. PubMed ID: 16439657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Revisiting the planarity of nucleic acid bases: Pyramidilization at glycosidic nitrogen in purine bases is modulated by orientation of glycosidic torsion.
    Sychrovsky V; Foldynova-Trantirkova S; Spackova N; Robeyns K; Van Meervelt L; Blankenfeldt W; Vokacova Z; Sponer J; Trantirek L
    Nucleic Acids Res; 2009 Nov; 37(21):7321-31. PubMed ID: 19786496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of embedded carbon nanotube on properties of biomembrane.
    Li X; Shi Y; Miao B; Zhao Y
    J Phys Chem B; 2012 May; 116(18):5391-7. PubMed ID: 22515150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids.
    Lustig SR; Jagota A; Khripin C; Zheng M
    J Phys Chem B; 2005 Feb; 109(7):2559-66. PubMed ID: 16851257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.