These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21682317)

  • 1. The role of electrochemical phenomena in scanning probe microscopy of ferroelectric thin films.
    Kalinin SV; Jesse S; Tselev A; Baddorf AP; Balke N
    ACS Nano; 2011 Jul; 5(7):5683-91. PubMed ID: 21682317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of ferroelectric nanodomains in BaTiO(3) epitaxial thin films via piezoresponse force microscopy.
    Pertsev NA; Petraru A; Kohlstedt H; Waser R; Bdikin IK; Kiselev D; Kholkin AL
    Nanotechnology; 2008 Sep; 19(37):375703. PubMed ID: 21832557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of the local oxygen vacancy concentration on the piezoresponse of strontium titanate thin films.
    Andrä M; Gunkel F; Bäumer C; Xu C; Dittmann R; Waser R
    Nanoscale; 2015 Sep; 7(34):14351-7. PubMed ID: 26246071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical State Evolution in Ferroelectric Films during Tip-Induced Polarization and Electroresistive Switching.
    Ievlev AV; Maksymovych P; Trassin M; Seidel J; Ramesh R; Kalinin SV; Ovchinnikova OS
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29588-29593. PubMed ID: 27726329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale ferroelectric field-effect writing and reading using scanning tunnelling spectroscopy.
    Kuffer O; Maggio-Aprile I; Fischer Ø
    Nat Mater; 2005 May; 4(5):378-82. PubMed ID: 15834416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale bit formation in highly (111)-oriented ferroelectric thin films deposited on glass substrates for high-density storage media.
    Kim DH; Kim YK; Hong S; Kim Y; Baik S
    Nanotechnology; 2011 Jun; 22(24):245705. PubMed ID: 21508503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled Porosity in Ferroelectric BaTiO
    Augurio A; Alvarez-Fernandez A; Panchal V; Pittenger B; De Wolf P; Guldin S; Briscoe J
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13147-13157. PubMed ID: 35271773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarization and local reactivity on organic ferroelectric surfaces: ferroelectric nanolithography using poly(vinylidene fluoride).
    Rankin C; Chou CH; Conklin D; Bonnell DA
    ACS Nano; 2007 Oct; 1(3):234-8. PubMed ID: 19206654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring local electrostatic effects with scanning probe microscopy: implications for piezoresponse force microscopy and triboelectricity.
    Balke N; Maksymovych P; Jesse S; Kravchenko II; Li Q; Kalinin SV
    ACS Nano; 2014 Oct; 8(10):10229-36. PubMed ID: 25257028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures.
    Kalinin SV; Kim Y; Fong DD; Morozovska AN
    Rep Prog Phys; 2018 Mar; 81(3):036502. PubMed ID: 29368693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of space and polarization charges of ferroelectric thin films measured by atomic force microscopy.
    Oh YJ; Lee JH; Jo W
    Ultramicroscopy; 2006; 106(8-9):779-84. PubMed ID: 16675118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of self-assembling isolated ferroelectric domains by scanning force microscopy.
    Lee B; Bae C; Kim SH; Shin H
    Ultramicroscopy; 2004 Aug; 100(3-4):339-46. PubMed ID: 15231327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing electrochemically induced resistive switching of TiO
    Lu W; Wong LM; Wang S; Zeng K
    Phys Chem Chem Phys; 2017 Nov; 19(46):31399-31409. PubMed ID: 29155913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local resistance switching at grain and grain boundary surfaces of polycrystalline tungsten oxide films.
    Shang DS; Shi L; Sun JR; Shen BG
    Nanotechnology; 2011 Jun; 22(25):254008. PubMed ID: 21572213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kelvin probe force microscopy for conducting nanobits of NiO thin films.
    Son JY; Shin YH; Kim H; Cho JH; Jang H
    Nanotechnology; 2010 May; 21(21):215704. PubMed ID: 20431198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic exchange force microscopy with atomic resolution.
    Kaiser U; Schwarz A; Wiesendanger R
    Nature; 2007 Mar; 446(7135):522-5. PubMed ID: 17392782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface charged species and electrochemistry of ferroelectric thin films.
    Domingo N; Gaponenko I; Cordero-Edwards K; Stucki N; Pérez-Dieste V; Escudero C; Pach E; Verdaguer A; Paruch P
    Nanoscale; 2019 Oct; 11(38):17920-17930. PubMed ID: 31553338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization control of electron tunneling into ferroelectric surfaces.
    Maksymovych P; Jesse S; Yu P; Ramesh R; Baddorf AP; Kalinin SV
    Science; 2009 Jun; 324(5933):1421-5. PubMed ID: 19520954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing local electromechanical effects in highly conductive electrolytes.
    Balke N; Tselev A; Arruda TM; Jesse S; Chu YH; Kalinin SV
    ACS Nano; 2012 Nov; 6(11):10139-46. PubMed ID: 23106854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled creation and displacement of charged domain walls in ferroelectric thin films.
    Feigl L; Sluka T; McGilly LJ; Crassous A; Sandu CS; Setter N
    Sci Rep; 2016 Aug; 6():31323. PubMed ID: 27507433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.