These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21682326)

  • 1. Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses.
    De Luca A; Grzelczak MP; Pastoriza-Santos I; Liz-Marzán LM; La Deda M; Striccoli M; Strangi G
    ACS Nano; 2011 Jul; 5(7):5823-9. PubMed ID: 21682326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation.
    Peng B; Zhang Q; Liu X; Ji Y; Demir HV; Huan CH; Sum TC; Xiong Q
    ACS Nano; 2012 Jul; 6(7):6250-9. PubMed ID: 22690741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband optical transparency in plasmonic nanocomposite polymer films via exciton-plasmon energy transfer.
    Dhama R; Rashed AR; Caligiuri V; El Kabbash M; Strangi G; De Luca A
    Opt Express; 2016 Jun; 24(13):14632-41. PubMed ID: 27410615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles.
    Stobiecka M; Hepel M
    Phys Chem Chem Phys; 2011 Jan; 13(3):1131-9. PubMed ID: 21072434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gain and plasmon dynamics in active negative-index metamaterials.
    Wuestner S; Pusch A; Tsakmakidis KL; Hamm JM; Hess O
    Philos Trans A Math Phys Eng Sci; 2011 Sep; 369(1950):3525-50. PubMed ID: 21807726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids.
    Zhang H; Cui H
    Langmuir; 2009 Mar; 25(5):2604-12. PubMed ID: 19437685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores.
    Kim JH; Bryan WW; Lee TR
    Langmuir; 2008 Oct; 24(19):11147-52. PubMed ID: 18788760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-shell nanoarchitectures: a strategy to improve the efficiency of luminescence resonance energy transfer.
    Song C; Ye Z; Wang G; Yuan J; Guan Y
    ACS Nano; 2010 Sep; 4(9):5389-97. PubMed ID: 20681528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-step generation of fluorophore-encapsulated gold nanoparticle core-shell materials.
    Sardar R; Shem PM; Pecchia-Bekkum C; Bjorge NS; Shumaker-Parry JS
    Nanotechnology; 2010 Aug; 21(34):345603. PubMed ID: 20683134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnifying superlenses and other applications of plasmonic metamaterials in microscopy and sensing.
    Smolyaninov II; Davis CC
    Chemphyschem; 2009 Mar; 10(4):625-8. PubMed ID: 19219891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.
    Chen J; Zeng F; Wu S; Su J; Zhao J; Tong Z
    Nanotechnology; 2009 Sep; 20(36):365502. PubMed ID: 19687556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss-free and active optical negative-index metamaterials.
    Xiao S; Drachev VP; Kildishev AV; Ni X; Chettiar UK; Yuan HK; Shalaev VM
    Nature; 2010 Aug; 466(7307):735-8. PubMed ID: 20686570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal hyperbolic metamaterials.
    Guo Y; Jacob Z
    Opt Express; 2013 Jun; 21(12):15014-9. PubMed ID: 23787688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape.
    Tabor C; Murali R; Mahmoud M; El-Sayed MA
    J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of plasmonic coupling in gallium nanoparticles/graphene/SiC.
    Yi C; Kim TH; Jiao W; Yang Y; Lazarides A; Hingerl K; Bruno G; Brown A; Losurdo M
    Small; 2012 Sep; 8(17):2721-30. PubMed ID: 22674808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quenching and blinking of fluorescence of a single dye molecule bound to gold nanoparticles.
    Cannone F; Chirico G; Bizzarri AR; Cannistraro S
    J Phys Chem B; 2006 Aug; 110(33):16491-8. PubMed ID: 16913781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles.
    Wang M; Hou W; Mi CC; Wang WX; Xu ZR; Teng HH; Mao CB; Xu SK
    Anal Chem; 2009 Nov; 81(21):8783-9. PubMed ID: 19807113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.