BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21682337)

  • 1. Generalized theory for nanoscale voltammetric measurements of heterogeneous electron-transfer kinetics at macroscopic substrates by scanning electrochemical microscopy.
    Amemiya S; Nioradze N; Santhosh P; Deible MJ
    Anal Chem; 2011 Aug; 83(15):5928-35. PubMed ID: 21682337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implications of Marcus-Hush theory for steady-state heterogeneous electron transfer at an inlaid disk electrode.
    Feldberg SW
    Anal Chem; 2010 Jun; 82(12):5176-83. PubMed ID: 20496865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-transfer kinetics and electric double layer effects in nanometer-wide thin-layer cells.
    Fan L; Liu Y; Xiong J; White HS; Chen S
    ACS Nano; 2014 Oct; 8(10):10426-36. PubMed ID: 25211307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning electrochemical microscopy (SECM) studies of catalytic EC' processes: theory and experiment for feedback, generation/collection and imaging measurements.
    Cannan S; Cervera J; Steliaros RJ; Bitziou E; Whitworth AL; Unwin PR
    Phys Chem Chem Phys; 2011 Mar; 13(12):5403-12. PubMed ID: 21350736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-steady-state voltammetry of rapid electron transfer reactions at the macroscopic substrate of the scanning electrochemical microscope.
    Nioradze N; Kim J; Amemiya S
    Anal Chem; 2011 Feb; 83(3):828-35. PubMed ID: 21175129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scanning electrochemical microscopy. 57. SECM tip voltammetry at different substrate potentials under quasi-steady-state and steady-state conditions.
    Zoski CG; Luman CR; Fernández JL; Bard AJ
    Anal Chem; 2007 Jul; 79(13):4957-66. PubMed ID: 17530738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism.
    Sánchez-Sánchez CM; Rodríguez-López J; Bard AJ
    Anal Chem; 2008 May; 80(9):3254-60. PubMed ID: 18355084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning electrochemical microscopy 50. Kinetic study of electrode reactions by the tip generation-substrate collection mode.
    Fernández JL; Bard AJ
    Anal Chem; 2004 Apr; 76(8):2281-9. PubMed ID: 15080739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scanning electrochemical cell microscopy: theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements.
    Snowden ME; Güell AG; Lai SC; McKelvey K; Ebejer N; O'Connell MA; Colburn AW; Unwin PR
    Anal Chem; 2012 Mar; 84(5):2483-91. PubMed ID: 22279955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis and application of tip position modulation-scanning electrochemical microscopy.
    Edwards MA; Whitworth AL; Unwin PR
    Anal Chem; 2011 Mar; 83(6):1977-84. PubMed ID: 21322581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of viscosity on steady-state voltammetry and scanning electrochemical microscopy in room temperature ionic liquids.
    Lovelock KR; Cowling FN; Taylor AW; Licence P; Walsh DA
    J Phys Chem B; 2010 Apr; 114(13):4442-50. PubMed ID: 20225849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SECM study of solute partitioning and electron transfer at the ionic liquid/water interface.
    Laforge FO; Kakiuchi T; Shigematsu F; Mirkin MV
    Langmuir; 2006 Dec; 22(25):10705-10. PubMed ID: 17129049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of batch-microfabricated scanning electrochemical-atomic force microscopy probes.
    Dobson PS; Weaver JM; Holder MN; Unwin PR; Macpherson JV
    Anal Chem; 2005 Jan; 77(2):424-34. PubMed ID: 15649037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new rapid and simple method to determine the kinetics of electrode reactions of biologically relevant compounds from the half-peak width of the square-wave voltammograms.
    Gulaboski R; Lovrić M; Mirceski V; Bogeski I; Hoth M
    Biophys Chem; 2008 Dec; 138(3):130-7. PubMed ID: 18929440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Access to enhanced differences in Marcus-Hush and Butler-Volmer electron transfer theories by systematic analysis of higher order AC harmonics.
    Stevenson GP; Baker RE; Kennedy GF; Bond AM; Gavaghan DJ; Gillow K
    Phys Chem Chem Phys; 2013 Feb; 15(6):2210-21. PubMed ID: 23223455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanopipet voltammetry of common ions across the liquid-liquid interface. Theory and limitations in kinetic analysis of nanoelectrode voltammograms.
    Rodgers PJ; Amemiya S; Wang Y; Mirkin MV
    Anal Chem; 2010 Jan; 82(1):84-90. PubMed ID: 20000448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the diffusion of ferrocenemethanol in room-temperature ionic liquids: an electrochemical study.
    Lovelock KR; Ejigu A; Loh SF; Men S; Licence P; Walsh DA
    Phys Chem Chem Phys; 2011 Jun; 13(21):10155-64. PubMed ID: 21526252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction of electrode kinetic parameters from microdisc voltammetric data measured under transport conditions intermediate between steady-state convergent and transient linear diffusion as typically applies to room temperature ionic liquids.
    Barnes AS; Rogers EI; Streeter I; Aldous L; Hardacre C; Compton RG
    J Phys Chem B; 2008 Jun; 112(25):7560-5. PubMed ID: 18507454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron transfer kinetics at polarized nanoscopic liquid/liquid interfaces.
    Cai C; Mirkin MV
    J Am Chem Soc; 2006 Jan; 128(1):171-9. PubMed ID: 16390144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemistry at nanometer-sized electrodes.
    Chen S; Liu Y
    Phys Chem Chem Phys; 2014 Jan; 16(2):635-52. PubMed ID: 24276332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.