These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 21682340)
1. Comparison of ERLIC-TiO2, HILIC-TiO2, and SCX-TiO2 for global phosphoproteomics approaches. Zarei M; Sprenger A; Metzger F; Gretzmeier C; Dengjel J J Proteome Res; 2011 Aug; 10(8):3474-83. PubMed ID: 21682340 [TBL] [Abstract][Full Text] [Related]
2. Combinatorial use of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and strong cation exchange (SCX) chromatography for in-depth phosphoproteome analysis. Zarei M; Sprenger A; Gretzmeier C; Dengjel J J Proteome Res; 2012 Aug; 11(8):4269-76. PubMed ID: 22768876 [TBL] [Abstract][Full Text] [Related]
3. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry. Yeh TT; Ho MY; Chen WY; Hsu YC; Ku WC; Tseng HW; Chen ST; Chen SF Anal Bioanal Chem; 2019 Jun; 411(15):3417-3424. PubMed ID: 31011783 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET). Nie S; Dai J; Ning ZB; Cao XJ; Sheng QH; Zeng R J Proteome Res; 2010 Sep; 9(9):4585-94. PubMed ID: 20681634 [TBL] [Abstract][Full Text] [Related]
5. Development and application of a phosphoproteomic method using electrostatic repulsion-hydrophilic interaction chromatography (ERLIC), IMAC, and LC-MS/MS analysis to study Marek's Disease Virus infection. Chien KY; Liu HC; Goshe MB J Proteome Res; 2011 Sep; 10(9):4041-53. PubMed ID: 21736374 [TBL] [Abstract][Full Text] [Related]
6. Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. Li QR; Ning ZB; Tang JS; Nie S; Zeng R J Proteome Res; 2009 Nov; 8(11):5375-81. PubMed ID: 19761217 [TBL] [Abstract][Full Text] [Related]
7. Citric acid-assisted two-step enrichment with TiO2 enhances the separation of multi- and monophosphorylated peptides and increases phosphoprotein profiling. Zhao X; Wang Q; Wang S; Zou X; An M; Zhang X; Ji J J Proteome Res; 2013 Jun; 12(6):2467-76. PubMed ID: 23663014 [TBL] [Abstract][Full Text] [Related]
8. Complementary workflow for global phosphoproteome analysis. Li QR; Ning ZB; Yang XL; Wu JR; Zeng R Electrophoresis; 2012 Nov; 33(22):3291-8. PubMed ID: 23097065 [TBL] [Abstract][Full Text] [Related]
12. A comparative study of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) versus SCX-IMAC-based methods for phosphopeptide isolation/enrichment. Gan CS; Guo T; Zhang H; Lim SK; Sze SK J Proteome Res; 2008 Nov; 7(11):4869-77. PubMed ID: 18828627 [TBL] [Abstract][Full Text] [Related]
13. Electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) versus strong cation exchange (SCX) for fractionation of iTRAQ-labeled peptides. Hao P; Qian J; Ren Y; Sze SK J Proteome Res; 2011 Dec; 10(12):5568-74. PubMed ID: 22014306 [TBL] [Abstract][Full Text] [Related]
14. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456 [TBL] [Abstract][Full Text] [Related]
15. Ethylenediaminetetraacetic acid increases identification rate of phosphoproteomics in real biological samples. Nakamura T; Myint KT; Oda Y J Proteome Res; 2010 Mar; 9(3):1385-91. PubMed ID: 20099890 [TBL] [Abstract][Full Text] [Related]
16. Fast and easy phosphopeptide fractionation by combinatorial ERLIC-SCX solid-phase extraction for in-depth phosphoproteome analysis. Zarei M; Sprenger A; Rackiewicz M; Dengjel J Nat Protoc; 2016 Jan; 11(1):37-45. PubMed ID: 26633130 [TBL] [Abstract][Full Text] [Related]
17. TiSH--a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC. Engholm-Keller K; Birck P; Størling J; Pociot F; Mandrup-Poulsen T; Larsen MR J Proteomics; 2012 Oct; 75(18):5749-61. PubMed ID: 22906719 [TBL] [Abstract][Full Text] [Related]
18. A comparative study of phosphopeptide-selective techniques for a sub-proteome of a complex biological sample. Källsten M; Bergquist J; Zhao H; Konzer A; Lind SB Anal Bioanal Chem; 2016 Mar; 408(9):2347-56. PubMed ID: 26886742 [TBL] [Abstract][Full Text] [Related]
19. High accuracy mass spectrometry in large-scale analysis of protein phosphorylation. Olsen JV; Macek B Methods Mol Biol; 2009; 492():131-42. PubMed ID: 19241030 [TBL] [Abstract][Full Text] [Related]
20. Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry. Dai J; Wang LS; Wu YB; Sheng QH; Wu JR; Shieh CH; Zeng R J Proteome Res; 2009 Jan; 8(1):133-41. PubMed ID: 19053533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]