These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 21682384)

  • 1. Temporal coherence of acoustic signals in a fluctuating ocean.
    Voronovich AG; Ostashev VE; Colosi JA
    J Acoust Soc Am; 2011 Jun; 129(6):3590-7. PubMed ID: 21682384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Horizontal structure of acoustic intensity fluctuations in the ocean.
    Uscinski BJ; Nicholson JR
    J Acoust Soc Am; 2008 Oct; 124(4):1963-73. PubMed ID: 19062836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal coherence of sound transmissions in deep water revisited.
    Yang TC
    J Acoust Soc Am; 2008 Jul; 124(1):113-127. PubMed ID: 18646959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.
    Gong Z; Chen T; Ratilal P; Makris NC
    J Acoust Soc Am; 2013 Nov; 134(5):3476-85. PubMed ID: 24180758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled mode transport theory for sound transmission through an ocean with random sound speed perturbations: coherence in deep water environments.
    Colosi JA; Chandrayadula TK; Voronovich AG; Ostashev VE
    J Acoust Soc Am; 2013 Oct; 134(4):3119-33. PubMed ID: 24116510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Information and linearity of time-domain complex demodulated amplitude and phase data in shallow water.
    Sarkar J; Cornuelle BD; Kuperman WA
    J Acoust Soc Am; 2011 Sep; 130(3):1242-52. PubMed ID: 21895067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal coherence after multiple forward scattering through random three-dimensional inhomogeneities in an ocean waveguide.
    Chen T; Ratilal P; Makris NC
    J Acoust Soc Am; 2008 Nov; 124(5):2812-22. PubMed ID: 19045769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.
    Duda TF; Lin YT; Reeder DB
    J Acoust Soc Am; 2011 Sep; 130(3):1173-87. PubMed ID: 21895060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observed limiting cases of horizontal field coherence and array performance in a time-varying internal wavefield.
    Collis JM; Duda TF; Lynch JF; DeFerrari HA
    J Acoust Soc Am; 2008 Sep; 124(3):EL97-103. PubMed ID: 19045569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust passive range estimation using the waveguide invariant.
    Cockrell KL; Schmidt H
    J Acoust Soc Am; 2010 May; 127(5):2780-9. PubMed ID: 21117727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eigenvalues of the sample covariance matrix for a towed array.
    Gerstoft P; Menon R; Hodgkiss WS; Mecklenbräuker CF
    J Acoust Soc Am; 2012 Oct; 132(4):2388-96. PubMed ID: 23039434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probability distribution for energy of saturated broadband ocean acoustic transmission: results from Gulf of Maine 2006 experiment.
    Tran D; Andrews M; Ratilal P
    J Acoust Soc Am; 2012 Dec; 132(6):3659-72. PubMed ID: 23231098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic observations.
    Rouseff D; Tang D; Williams KL; Wang Z; Moum JN
    J Acoust Soc Am; 2008 Sep; 124(3):EL73-7. PubMed ID: 19045565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observations and transport theory analysis of low frequency, acoustic mode propagation in the Eastern North Pacific Ocean.
    Chandrayadula TK; Colosi JA; Worcester PF; Dzieciuch MA; Mercer JA; Andrew RK; Howe BM
    J Acoust Soc Am; 2013 Oct; 134(4):3144-60. PubMed ID: 24116512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensity fluctuations of midfrequency sound signals passing through moving nonlinear internal waves.
    Katsnelson B; Grigorev V; Lynch JF
    J Acoust Soc Am; 2008 Sep; 124(3):EL78-84. PubMed ID: 19045566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of sound focusing and defocusing due to propagating nonlinear internal waves.
    Luo J; Badiey M; Karjadi EA; Katsnelson B; Tskhoidze A; Lynch JF; Moum JN
    J Acoust Soc Am; 2008 Sep; 124(3):EL66-72. PubMed ID: 19045564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green's function approximation from cross-correlations of 20-100 Hz noise during a tropical storm.
    Brooks LA; Gerstoft P
    J Acoust Soc Am; 2009 Feb; 125(2):723-34. PubMed ID: 19206850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.
    Ardhuin F; Lavanant T; Obrebski M; Marié L; Royer JY; d'Eu JF; Howe BM; Lukas R; Aucan J
    J Acoust Soc Am; 2013 Oct; 134(4):3242-59. PubMed ID: 24116520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Source motion detection, estimation, and compensation for underwater acoustics inversion by wideband ambiguity lag-Doppler filtering.
    Josso NF; Ioana C; Mars JI; Gervaise C
    J Acoust Soc Am; 2010 Dec; 128(6):3416-25. PubMed ID: 21218875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal coherence of mode arrivals.
    DeFerrari HA; Lynch JF; Newhall A
    J Acoust Soc Am; 2008 Sep; 124(3):EL104-9. PubMed ID: 19045550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.