BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21682419)

  • 21. Relative contribution to speech intelligibility of different envelope modulation rates within the speech dynamic range.
    Stone MA; Füllgrabe C; Moore BC
    J Acoust Soc Am; 2010 Oct; 128(4):2127-37. PubMed ID: 20968383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using envelope modulation to explain speech intelligibility in the presence of a single reflection.
    Muralimanohar RK; Kates JM; Arehart KH
    J Acoust Soc Am; 2017 May; 141(5):EL482. PubMed ID: 28599537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intelligibility and listener preference of telephone speech in the presence of babble noise.
    Hall JL; Flanagan JL
    J Acoust Soc Am; 2010 Jan; 127(1):280-5. PubMed ID: 20058974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The dynamic range of useful temporal fine structure cues for speech in the presence of a competing talker.
    Stone MA; Moore BC; Füllgrabe C
    J Acoust Soc Am; 2011 Oct; 130(4):2162-72. PubMed ID: 21973370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal and spectral cues in Mandarin tone recognition.
    Kong YY; Zeng FG
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2830-40. PubMed ID: 17139741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Temporal Envelope Cutoff Frequency, Number of Channels, and Carrier Type on Brainstem Neural Representation of Pitch in Vocoded Speech.
    Ananthakrishnan S; Luo X
    J Speech Lang Hear Res; 2022 Aug; 65(8):3146-3164. PubMed ID: 35944032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding compression: modeling the effects of dynamic-range compression in hearing aids.
    Kates JM
    Int J Audiol; 2010 Jun; 49(6):395-409. PubMed ID: 20225931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perception of speech with envelope enhancement in individuals with auditory neuropathy and simulated loss of temporal modulation processing.
    Narne VK; Vanaja CS
    Int J Audiol; 2009; 48(10):700-7. PubMed ID: 19626513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EEG-based assessment of temporal fine structure and envelope effect in mandarin syllable and tone perception.
    Ni G; Xu Z; Bai Y; Zheng Q; Zhao R; Wu Y; Ming D
    Cereb Cortex; 2023 Nov; 33(23):11287-11299. PubMed ID: 37804238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined effects of frequency compression-expansion and shift on speech recognition.
    Başkent D; Shannon RV
    Ear Hear; 2007 Jun; 28(3):277-89. PubMed ID: 17485977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of lowpass and highpass filtering on the intelligibility of speech based on temporal fine structure or envelope cues.
    Ardoint M; Lorenzi C
    Hear Res; 2010 Feb; 260(1-2):89-95. PubMed ID: 19963053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Failure of the precedence effect with a noise-band vocoder.
    Seeber BU; Hafter ER
    J Acoust Soc Am; 2011 Mar; 129(3):1509-21. PubMed ID: 21428515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perception of temporal fine-structure cues in speech with minimal envelope cues for listeners with mild-to-moderate hearing loss.
    Ardoint M; Sheft S; Fleuriot P; Garnier S; Lorenzi C
    Int J Audiol; 2010 Nov; 49(11):823-31. PubMed ID: 20666687
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal resolution in regions of normal hearing and speech perception in noise for adults with sloping high-frequency hearing loss.
    Feng Y; Yin S; Kiefte M; Wang J
    Ear Hear; 2010 Feb; 31(1):115-25. PubMed ID: 19816181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Horizontal-plane localization of noise and speech signals by postlingually deafened adults fitted with bilateral cochlear implants.
    Grantham DW; Ashmead DH; Ricketts TA; Labadie RF; Haynes DS
    Ear Hear; 2007 Aug; 28(4):524-41. PubMed ID: 17609614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perceptual relevance of the temporal envelope to the speech signal in the 4-7 kHz band.
    Kim KT; Choi JY; Kang HG
    J Acoust Soc Am; 2007 Sep; 122(3):EL88. PubMed ID: 17927313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The performance of different synthesis signals in acoustic models of cochlear implants.
    Strydom T; Hanekom JJ
    J Acoust Soc Am; 2011 Feb; 129(2):920-33. PubMed ID: 21361449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel VOCODER for cochlear implants.
    Johnson PA; McNamara DM; Ziarani AK
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4732-5. PubMed ID: 19163773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The efficacy of a multichannel hearing aid in which the gain is controlled by the minima in the temporal signal envelope.
    Festen JM; van Dijkhuizen JN; Plomp R
    Scand Audiol Suppl; 1993; 38():101-10. PubMed ID: 8153556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A spectral/temporal method for robust fundamental frequency tracking.
    Zahorian SA; Hu H
    J Acoust Soc Am; 2008 Jun; 123(6):4559-71. PubMed ID: 18537404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.