These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21682419)

  • 61. Toward optimizing stream fusion in multistream recognition of speech.
    Mesgarani N; Thomas S; Hermansky H
    J Acoust Soc Am; 2011 Jul; 130(1):EL14-8. PubMed ID: 21786862
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Single-channel noise reduction using optimal rectangular filtering matrices.
    Long T; Chen J; Benesty J; Zhang Z
    J Acoust Soc Am; 2013 Feb; 133(2):1090-101. PubMed ID: 23363124
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Spectral-envelope-group-delay models for transients.
    Shenoy RR; Seelamantula CS
    J Acoust Soc Am; 2013 May; 133(5):2788-802. PubMed ID: 23654386
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cantonese lexical tone recognition from frequency-specific temporal envelope and periodicity components in the same versus different noise band carriers.
    Yuen KC; Tong MC; Van Hasselt CA; Yuan M; Lee T; Soli SD
    Cochlear Implants Int; 2009; 10 Suppl 1():148-58. PubMed ID: 19195000
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Spectro-temporal modulation subspace-spanning filter bank features for robust automatic speech recognition.
    Schädler M; Meyer BT; Kollmeier B
    J Acoust Soc Am; 2012 May; 131(5):4134-51. PubMed ID: 22559385
    [TBL] [Abstract][Full Text] [Related]  

  • 66. What is temporal fine structure and why is it important?
    Moon IJ; Hong SH
    Korean J Audiol; 2014 Apr; 18(1):1-7. PubMed ID: 24782944
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Robust Neuronal Discrimination in Primary Auditory Cortex Despite Degradations of Spectro-temporal Acoustic Details: Comparison Between Guinea Pigs with Normal Hearing and Mild Age-Related Hearing Loss.
    Aushana Y; Souffi S; Edeline JM; Lorenzi C; Huetz C
    J Assoc Res Otolaryngol; 2018 Apr; 19(2):163-180. PubMed ID: 29302822
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Statistical voice activity detection in kernel space.
    Kim DK; Chang JH
    J Acoust Soc Am; 2012 Oct; 132(4):EL303-9. PubMed ID: 23039569
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [The perception of the tone and noise quality of a sound signal].
    Malinnikova TG; Chernova EI; Chistovich IA
    Fiziol Zh Im I M Sechenova; 1995 Jul; 81(7):131-40. PubMed ID: 8714388
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Relative contribution of envelope and fine structure to the subcortical encoding of noise-degraded speech.
    Bidelman GM
    J Acoust Soc Am; 2016 Oct; 140(4):EL358. PubMed ID: 27794347
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Speech quality estimation of voice over internet protocol codec using a packet loss impairment model.
    Lee MK; Kang HG
    J Acoust Soc Am; 2013 Nov; 134(5):EL438-44. PubMed ID: 24181988
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cognitive disruption by noise-vocoded speech stimuli: Effects of spectral variation.
    Senan TU; Jelfs S; Kohlrausch A
    J Acoust Soc Am; 2018 Mar; 143(3):1407. PubMed ID: 29604682
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Speech rhythm analysis with decomposition of the amplitude envelope: characterizing rhythmic patterns within and across languages.
    Tilsen S; Arvaniti A
    J Acoust Soc Am; 2013 Jul; 134(1):628-39. PubMed ID: 23862837
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Optimal combination of neural temporal envelope and fine structure cues to explain speech identification in background noise.
    Moon IJ; Won JH; Park MH; Ives DT; Nie K; Heinz MG; Lorenzi C; Rubinstein JT
    J Neurosci; 2014 Sep; 34(36):12145-54. PubMed ID: 25186758
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [The role of temporal fine structure in tone recognition and music perception].
    Zhou Q; Gu X; Liu B
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2017 Nov; 52(11):867-871. PubMed ID: 29141304
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Decision-directed speech power spectral density matrix estimation for multichannel speech enhancement.
    Jin YG; Shin JW; Kim NS
    J Acoust Soc Am; 2017 Mar; 141(3):EL228. PubMed ID: 28372120
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Auditory motivated front-end for noisy speech using spectro-temporal modulation filtering.
    Ganapathy S; Omar M
    J Acoust Soc Am; 2014 Nov; 136(5):EL343-9. PubMed ID: 25373991
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of temporal modulation reduction on spectral contrasts in speech.
    Drullman R; Festen JM; Houtgast T
    J Acoust Soc Am; 1996 Apr; 99(4 Pt 1):2358-64. PubMed ID: 8730082
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Quad-band excitation for low bit rate speech coding.
    Chiu KM; Ching PC
    J Acoust Soc Am; 1996 Apr; 99(4 Pt 1):2365-9. PubMed ID: 8730083
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Relative importance of temporal envelope and fine structure in lexical-tone perception.
    Xu L; Pfingst BE
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3024-7. PubMed ID: 14714781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.