These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21682504)

  • 21. Infinite Boundary Terms of Ewald Sums and Pairwise Interactions for Electrostatics in Bulk and at Interfaces.
    Hu Z
    J Chem Theory Comput; 2014 Dec; 10(12):5254-64. PubMed ID: 26583209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The electrostatic surface term: (I) periodic systems.
    Herce HD; Garcia AE; Darden T
    J Chem Phys; 2007 Mar; 126(12):124106. PubMed ID: 17411107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of a molecular mechanics force field for type-II polyoxometalates focussing on electrostatic interactions: a case study.
    Courcot B; Bridgeman AJ
    J Comput Chem; 2011 Jun; 32(8):1703-10. PubMed ID: 21370240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the Numerical Accuracy of Ewald, Smooth Particle Mesh Ewald, and Staggered Mesh Ewald Methods for Correlated Molecular Systems.
    Wang H; Zhang P; Schütte C
    J Chem Theory Comput; 2012 Sep; 8(9):3243-56. PubMed ID: 26605733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accurate prediction of absolute acidity constants in water with a polarizable force field: substituted phenols, methanol, and imidazole.
    Kaminski GA
    J Phys Chem B; 2005 Mar; 109(12):5884-90. PubMed ID: 16851640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polarization energy gradients in combined quantum mechanics, effective fragment potential, and polarizable continuum model calculations.
    Li H; Gordon MS
    J Chem Phys; 2007 Mar; 126(12):124112. PubMed ID: 17411113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arbitrary order permanent Cartesian multipolar electrostatic interactions.
    Boateng HA; Todorov IT
    J Chem Phys; 2015 Jan; 142(3):034117. PubMed ID: 25612699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Software for Evaluating Long-Range Electrostatic Interactions Based on the Ewald Summation and Its Application to Electrochemical Energy Storage Materials.
    Shi W; He B; Pu B; Ren Y; Avdeev M; Shi S
    J Phys Chem A; 2022 Aug; 126(31):5222-5230. PubMed ID: 35900935
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methodological problems in pressure profile calculations for lipid bilayers.
    Sonne J; Hansen FY; Peters GH
    J Chem Phys; 2005 Mar; 122(12):124903. PubMed ID: 15836420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast empirical pKa prediction by Ewald summation.
    Krieger E; Nielsen JE; Spronk CA; Vriend G
    J Mol Graph Model; 2006 Dec; 25(4):481-6. PubMed ID: 16644253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations.
    Sagui C; Pedersen LG; Darden TA
    J Chem Phys; 2004 Jan; 120(1):73-87. PubMed ID: 15267263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrostatic potentials and fields from density expansions of deformed atoms in molecules.
    Rico JF; López R; Ema I; Ramírez G
    J Comput Chem; 2004 Aug; 25(11):1347-54. PubMed ID: 15185328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-range electrostatic interactions in hybrid quantum and molecular mechanical dynamics using a lattice summation approach.
    Dehez F; Martins-Costa MT; Rinaldi D; Millot C
    J Chem Phys; 2005 Jun; 122(23):234503. PubMed ID: 16008458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum mechanical/molecular mechanical/continuum style solvation model: linear response theory, variational treatment, and nuclear gradients.
    Li H
    J Chem Phys; 2009 Nov; 131(18):184103. PubMed ID: 19916594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A charge-dipole model for the static polarizability of nanostructures including aliphatic, olephinic, and aromatic systems.
    Mayer A; Astrand PO
    J Phys Chem A; 2008 Feb; 112(6):1277-85. PubMed ID: 18198848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient and accurate solvation energy calculation from polarizable continuum models.
    Lin ST; Hsieh CM
    J Chem Phys; 2006 Sep; 125(12):124103. PubMed ID: 17014162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A modified TIP3P water potential for simulation with Ewald summation.
    Price DJ; Brooks CL
    J Chem Phys; 2004 Nov; 121(20):10096-103. PubMed ID: 15549884
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A first principles based polarizable O(N) interatomic force field for bulk silica.
    Kermode JR; Cereda S; Tangney P; De Vita A
    J Chem Phys; 2010 Sep; 133(9):094102. PubMed ID: 20831310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.