These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 21682537)

  • 1. The effect of Brownian motion of fluorescent probes on measuring nanoscale distances by Förster resonance energy transfer.
    Badali D; Gradinaru CC
    J Chem Phys; 2011 Jun; 134(22):225102. PubMed ID: 21682537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing the use of molecular dynamics to simulate fluorophore motions and FRET.
    Deplazes E; Jayatilaka D; Corry B
    Phys Chem Chem Phys; 2011 Jun; 13(23):11045-54. PubMed ID: 21556410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity.
    Sindbert S; Kalinin S; Nguyen H; Kienzler A; Clima L; Bannwarth W; Appel B; Müller S; Seidel CA
    J Am Chem Soc; 2011 Mar; 133(8):2463-80. PubMed ID: 21291253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gauging the flexibility of fluorescent markers for the interpretation of fluorescence resonance energy transfer.
    Rindermann JJ; Akhtman Y; Richardson J; Brown T; Lagoudakis PG
    J Am Chem Soc; 2011 Jan; 133(2):279-85. PubMed ID: 21155557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientational averaging of dye molecules attached to proteins in Förster resonance energy transfer measurements: insights from a simulation study.
    Allen LR; Paci E
    J Chem Phys; 2009 Aug; 131(6):065101. PubMed ID: 19691411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET.
    Ranjit S; Gurunathan K; Levitus M
    J Phys Chem B; 2009 Jun; 113(22):7861-6. PubMed ID: 19473039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of photon statistics in single-molecule Förster resonance energy transfer.
    Gopich I; Szabo A
    J Chem Phys; 2005 Jan; 122(1):14707. PubMed ID: 15638691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule FRET ruler based on rigid DNA origami blocks.
    Stein IH; Schüller V; Böhm P; Tinnefeld P; Liedl T
    Chemphyschem; 2011 Feb; 12(3):689-95. PubMed ID: 21308944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxazine dye-conjugated dna oligonucleotides: Förster resonance energy transfer in view of molecular dye-DNA interactions.
    Kupstat A; Ritschel T; Kumke MU
    Bioconjug Chem; 2011 Dec; 22(12):2546-57. PubMed ID: 22073970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation to investigate the FRET application in DNA hybridization systems.
    Liao JM; Wang YT; Chen CL
    Phys Chem Chem Phys; 2011 Jun; 13(21):10364-71. PubMed ID: 21537495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the nano-positioning system to the analysis of fluorescence resonance energy transfer networks.
    Muschielok A; Michaelis J
    J Phys Chem B; 2011 Oct; 115(41):11927-37. PubMed ID: 21888382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-cycle single-molecule FRET microscopy on polyprolines.
    Yuan H; Xia T; Schuler B; Orrit M
    Phys Chem Chem Phys; 2011 Feb; 13(5):1762-9. PubMed ID: 21152580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indocyanine dyes approach free rotation at the 3' terminus of A-RNA: a comparison with the 5' terminus and consequences for fluorescence resonance energy transfer.
    Milas P; Gamari BD; Parrot L; Krueger BP; Rahmanseresht S; Moore J; Goldner LS
    J Phys Chem B; 2013 Jul; 117(29):8649-58. PubMed ID: 23799279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach.
    Hoefling M; Lima N; Haenni D; Seidel CA; Schuler B; Grubmüller H
    PLoS One; 2011; 6(5):e19791. PubMed ID: 21629703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single-molecule Förster resonance energy transfer analysis of fluorescent DNA-protein conjugates for nanobiotechnology.
    Kukolka F; Müller BK; Paternoster S; Arndt A; Niemeyer CM; Bräuchle C; Lamb DC
    Small; 2006 Aug; 2(8-9):1083-9. PubMed ID: 17193172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately.
    Peulen TO; Opanasyuk O; Seidel CAM
    J Phys Chem B; 2017 Sep; 121(35):8211-8241. PubMed ID: 28709377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells.
    Hoke ET; Hardin BE; McGehee MD
    Opt Express; 2010 Feb; 18(4):3893-904. PubMed ID: 20389400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule fluorescence resonance energy transfer in nanopipets: improving distance resolution and concentration range.
    Vogelsang J; Doose S; Sauer M; Tinnefeld P
    Anal Chem; 2007 Oct; 79(19):7367-75. PubMed ID: 17822310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramolecular distances and dynamics from the combined photon statistics of single-molecule FRET and photoinduced electron transfer.
    Haenni D; Zosel F; Reymond L; Nettels D; Schuler B
    J Phys Chem B; 2013 Oct; 117(42):13015-28. PubMed ID: 23718771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.