BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2168295)

  • 1. Superoxide-driven NAD(P)H oxidation induced by EDTA-manganese complex and mercaptoethanol.
    Paoletti F; Mocali A; Aldinucci D
    Chem Biol Interact; 1990; 76(1):3-18. PubMed ID: 2168295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chelating agents and superoxide on human neutrophil NAD(P)H oxidation.
    Goetz MB; Proctor RA
    Anal Biochem; 1984 Feb; 137(1):230-5. PubMed ID: 6329025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD(P)H oxidation elicits anion superoxide formation in radish plasmalemma vesicles.
    Vianello A; Macrì F
    Biochim Biophys Acta; 1989 Apr; 980(2):202-8. PubMed ID: 2539193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweier JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):404-11. PubMed ID: 8643079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol oxidation coupled to DT-diaphorase-catalysed reduction of diaziquone. Reductive and oxidative pathways of diaziquone semiquinone modulated by glutathione and superoxide dismutase.
    Ordoñez ID; Cadenas E
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):481-90. PubMed ID: 1530580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase.
    Segura-Aguilar J; Lind C
    Chem Biol Interact; 1989; 72(3):309-24. PubMed ID: 2557982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen peroxide formation and iron ion oxidoreduction linked to NADH oxidation in radish plasmalemma vesicles.
    Vianello A; Zancani M; Macrí F
    Biochim Biophys Acta; 1990 Mar; 1023(1):19-24. PubMed ID: 2156562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of superoxide free radical during the autoxidation of thiols.
    Misra HP
    J Biol Chem; 1974 Apr; 249(7):2151-5. PubMed ID: 4206550
    [No Abstract]   [Full Text] [Related]  

  • 9. Interaction of heme nonapeptide derived from cytochrome c with microsomal reductases.
    Végh M; Kramer M; Horváth I
    Biochim Biophys Acta; 1986 Jun; 882(1):6-11. PubMed ID: 3011109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One- and two-electron reduction of 2-methyl-1,4-naphthoquinone bioreductive alkylating agents: kinetic studies, free-radical production, thiol oxidation and DNA-strand-break formation.
    Giulivi C; Cadenas E
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):21-30. PubMed ID: 8037673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide generated by glutathione reductase initiates a vanadate-dependent free radical chain oxidation of NADH.
    Liochev SI; Fridovich I
    Arch Biochem Biophys; 1992 May; 294(2):403-6. PubMed ID: 1314540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteamine oxygenase: possible involvement of superoxide ion in the catalytic mechanism.
    Ricci G; Duprè S; Federici G; Nardini M; Spoto G; Cavallini D
    Free Radic Res Commun; 1987; 3(6):365-71. PubMed ID: 2854532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalysis of superoxide dismutation by manganese aminopolycarboxylate complexes.
    Koppenol WH; Levine F; Hatmaker TL; Epp J; Rush JD
    Arch Biochem Biophys; 1986 Dec; 251(2):594-9. PubMed ID: 3026248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manganese ions, oxidation reactions and the superoxide radical.
    Halliwell B
    Neurotoxicology; 1984; 5(1):113-7. PubMed ID: 6326006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide dismutase inhibits the superoxide-driven Fenton reaction at two different levels. Implications for a wider protective role.
    Gutteridge JM
    FEBS Lett; 1985 Jun; 185(1):19-23. PubMed ID: 2987038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide generation by lipoxygenase in the presence of NADH and NADPH.
    Roy P; Roy SK; Mitra A; Kulkarni AP
    Biochim Biophys Acta; 1994 Sep; 1214(2):171-9. PubMed ID: 7918597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermediates in the aerobic autoxidation of 6-hydroxydopamine: relative importance under different reaction conditions.
    Gee P; Davison AJ
    Free Radic Biol Med; 1989; 6(3):271-84. PubMed ID: 2545550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new direct method for determining superoxide dismutase activity by measuring hydrogen peroxide formation.
    Segura-Aguilar J
    Chem Biol Interact; 1993 Jan; 86(1):69-78. PubMed ID: 8381720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide and hydrogen peroxide suppression by metal ions and their EDTA complexes.
    Fisher AE; Maxwell SC; Naughton DP
    Biochem Biophys Res Commun; 2004 Mar; 316(1):48-51. PubMed ID: 15003509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.