BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2168295)

  • 21. Superoxide dismutase enhances the formation of hydroxyl radicals in the reaction of 3-hydroxyanthranilic acid with molecular oxygen.
    Iwahashi H; Ishii T; Sugata R; Kido R
    Biochem J; 1988 May; 251(3):893-9. PubMed ID: 2843167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Copper + zinc and manganese superoxide dismutases inhibit deoxyribose degradation by the superoxide-driven Fenton reaction at two different stages. Implications for the redox states of copper and manganese.
    Gutteridge JM; Bannister JV
    Biochem J; 1986 Feb; 234(1):225-8. PubMed ID: 3010953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxygen Enhancement of bactericidal activity of rifamycin SV on Escherichia coli and aerobic oxidation of rifamycin SV to rifamycin S catalyzed by manganous ions: the role of superoxide.
    Kono Y
    J Biochem; 1982 Jan; 91(1):381-95. PubMed ID: 6279585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homogentisic acid autoxidation and oxygen radical generation: implications for the etiology of alkaptonuric arthritis.
    Martin JP; Batkoff B
    Free Radic Biol Med; 1987; 3(4):241-50. PubMed ID: 3121448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toxicity of aromatic disulphides. I. Generation of superoxide radical and hydrogen peroxide by aromatic disulphides in vitro.
    Munday R
    J Appl Toxicol; 1985 Dec; 5(6):402-8. PubMed ID: 3001166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen peroxide-induced cell and tissue injury: protective effects of Mn2+.
    Varani J; Ginsburg I; Gibbs DF; Mukhopadhyay PS; Sulavik C; Johnson KJ; Weinberg JM; Ryan US; Ward PA
    Inflammation; 1991 Aug; 15(4):291-301. PubMed ID: 1663084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nuclear DNA damage during NAD(P)H oxidation by membrane redox chains.
    Peskin AV
    Free Radic Biol Med; 1996; 20(3):313-8. PubMed ID: 8720901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A fluorimetric assay for hydrogen peroxide, suitable for NAD(P)H-dependent superoxide generating redox systems.
    Rapoport R; Hanukoglu I; Sklan D
    Anal Biochem; 1994 May; 218(2):309-13. PubMed ID: 8074285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions between metals, ligands, and oxygen in the autoxidation of 6-hydroxydopamine: mechanisms by which metal chelation enhances inhibition by superoxide dismutase.
    Bandy B; Davison AJ
    Arch Biochem Biophys; 1987 Dec; 259(2):305-15. PubMed ID: 3122661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thiol-dependent metal-catalyzed oxidation of bovine lens aldose reductase. I. Studies on the modification process.
    Giannessi M; Del Corso A; Cappiello M; Voltarelli M; Marini I; Barsacchi D; Garland D; Camici M; Mura U
    Arch Biochem Biophys; 1993 Jan; 300(1):423-9. PubMed ID: 8424675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of superoxide with other reducing agents in the biological production of hydroxyl radicals.
    Winterbourn CC
    Biochem J; 1979 Aug; 182(2):625-8. PubMed ID: 41521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ferritin stimulation of hydroxyl radical production by rat liver nuclei.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1994 Jan; 308(1):70-7. PubMed ID: 8311476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell nuclei generate DNA-nicking superoxide radicals.
    Peskin AV; Shlyahova L
    FEBS Lett; 1986 Jan; 194(2):317-21. PubMed ID: 3000831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro reconstitution of an NADPH-dependent superoxide reduction pathway from Pyrococcus furiosus.
    Grunden AM; Jenney FE; Ma K; Ji M; Weinberg MV; Adams MW
    Appl Environ Microbiol; 2005 Mar; 71(3):1522-30. PubMed ID: 15746356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The involvement of oxygen radicals during the autoxidation of adrenalin.
    Bors W; Michel C; Saran M; Lengfelder E
    Biochim Biophys Acta; 1978 Apr; 540(1):162-72. PubMed ID: 25091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The inhibition of corrinoid-catalyzed oxidation of mercaptoethanol by methyl iodide: mechanistic implications.
    Jacobsen DW; Pezacka EH; Brown KL
    J Inorg Biochem; 1993 Apr; 50(1):47-63. PubMed ID: 8473883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies with primaquine in vitro: superoxide radical formation and oxidation of haemoglobin.
    Summerfield M; Tudhope GR
    Br J Clin Pharmacol; 1978 Oct; 6(4):319-23. PubMed ID: 212091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monosaccharide autoxidation in health and disease.
    Thornalley PJ
    Environ Health Perspect; 1985 Dec; 64():297-307. PubMed ID: 3007096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generation of superoxide radical, hydrogen peroxide and hydroxyl radical during the autoxidation of N,N,N',N'-tetramethyl-p-phenylenediamine.
    Munday R
    Chem Biol Interact; 1988; 65(2):133-43. PubMed ID: 2835187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.