These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 21683323)

  • 21. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23.
    Chung MY; Lu YC; Cheng NC; Soong BW
    Brain; 2003 Jun; 126(Pt 6):1293-9. PubMed ID: 12764052
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The roles of NOP56 in cancer and SCA36.
    Zhao S; Zhang D; Liu S; Huang J
    Pathol Oncol Res; 2023; 29():1610884. PubMed ID: 36741964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3.
    Verbeek DS; van de Warrenburg BP; Wesseling P; Pearson PL; Kremer HP; Sinke RJ
    Brain; 2004 Nov; 127(Pt 11):2551-7. PubMed ID: 15306549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NMR solution structures of d(GGCCTG)
    Yi J; Wan L; Liu Y; Lam SL; Chan HYE; Han D; Guo P
    Int J Biol Macromol; 2022 Mar; 201():607-615. PubMed ID: 35077744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. C9ORF72 repeat expansion is not detected in sporadic ataxia patients in mainland China.
    He M; Yan WQ; Zeng S; Liu Z; Zhou Y; Zeng XF; Zeng JS; Jiang H; Shen L; Tang BS; Wang JL
    J Neurol Sci; 2016 Feb; 361():181-3. PubMed ID: 26810537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cerebellar Cognitive Affective Syndrome in Costa da Morte Ataxia (SCA36).
    Martínez-Regueiro R; Arias M; Cruz R; Quintáns B; Labella-Caballero T; Pardo M; Pardo J; García-Murias M; Carracedo A; Sobrido MJ; Fernández-Prieto M
    Cerebellum; 2020 Aug; 19(4):501-509. PubMed ID: 32270466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia.
    Chen DH; Brkanac Z; Verlinde CL; Tan XJ; Bylenok L; Nochlin D; Matsushita M; Lipe H; Wolff J; Fernandez M; Cimino PJ; Bird TD; Raskind WH
    Am J Hum Genet; 2003 Apr; 72(4):839-49. PubMed ID: 12644968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds.
    Tang B; Liu C; Shen L; Dai H; Pan Q; Jing L; Ouyang S; Xia J
    Arch Neurol; 2000 Apr; 57(4):540-4. PubMed ID: 10768629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spinocerebellar ataxia in the Italian Spinone dog is associated with an intronic GAA repeat expansion in ITPR1.
    Forman OP; De Risio L; Matiasek K; Platt S; Mellersh C
    Mamm Genome; 2015 Feb; 26(1-2):108-17. PubMed ID: 25354648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutation in the catalytic domain of protein kinase C gamma and extension of the phenotype associated with spinocerebellar ataxia type 14.
    Stevanin G; Hahn V; Lohmann E; Bouslam N; Gouttard M; Soumphonphakdy C; Welter ML; Ollagnon-Roman E; Lemainque A; Ruberg M; Brice A; Durr A
    Arch Neurol; 2004 Aug; 61(8):1242-8. PubMed ID: 15313841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma.
    Yabe I; Sasaki H; Chen DH; Raskind WH; Bird TD; Yamashita I; Tsuji S; Kikuchi S; Tashiro K
    Arch Neurol; 2003 Dec; 60(12):1749-51. PubMed ID: 14676051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions.
    Simón-Sánchez J; Dopper EG; Cohn-Hokke PE; Hukema RK; Nicolaou N; Seelaar H; de Graaf JR; de Koning I; van Schoor NM; Deeg DJ; Smits M; Raaphorst J; van den Berg LH; Schelhaas HJ; De Die-Smulders CE; Majoor-Krakauer D; Rozemuller AJ; Willemsen R; Pijnenburg YA; Heutink P; van Swieten JC
    Brain; 2012 Mar; 135(Pt 3):723-35. PubMed ID: 22300876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1.
    Miyoshi Y; Yamada T; Tanimura M; Taniwaki T; Arakawa K; Ohyagi Y; Furuya H; Yamamoto K; Sakai K; Sasazuki T; Kira J
    Neurology; 2001 Jul; 57(1):96-100. PubMed ID: 11445634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical features and genetic analysis of a new form of spinocerebellar ataxia.
    Devos D; Schraen-Maschke S; Vuillaume I; Dujardin K; Nazé P; Willoteaux C; Destée A; Sablonnière B
    Neurology; 2001 Jan; 56(2):234-8. PubMed ID: 11160961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The clinical characteristics of spinocerebellar ataxia 36: a study of 2121 Japanese ataxia patients.
    Sugihara K; Maruyama H; Morino H; Miyamoto R; Ueno H; Matsumoto M; Kaji R; Kitaguchi H; Yukitake M; Higashi Y; Nishinaka K; Oda M; Izumi Y; Kawakami H
    Mov Disord; 2012 Aug; 27(9):1158-63. PubMed ID: 22753339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Whole-genome sequencing reveals a coding non-pathogenic variant tagging a non-coding pathogenic hexanucleotide repeat expansion in C9orf72 as cause of amyotrophic lateral sclerosis.
    Herdewyn S; Zhao H; Moisse M; Race V; Matthijs G; Reumers J; Kusters B; Schelhaas HJ; van den Berg LH; Goris A; Robberecht W; Lambrechts D; Van Damme P
    Hum Mol Genet; 2012 Jun; 21(11):2412-9. PubMed ID: 22343411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72.
    Chiò A; Borghero G; Restagno G; Mora G; Drepper C; Traynor BJ; Sendtner M; Brunetti M; Ossola I; Calvo A; Pugliatti M; Sotgiu MA; Murru MR; Marrosu MG; Marrosu F; Marinou K; Mandrioli J; Sola P; Caponnetto C; Mancardi G; Mandich P; La Bella V; Spataro R; Conte A; Monsurrò MR; Tedeschi G; Pisano F; Bartolomei I; Salvi F; Lauria Pinter G; Simone I; Logroscino G; Gambardella A; Quattrone A; Lunetta C; Volanti P; Zollino M; Penco S; Battistini S; ; Renton AE; Majounie E; Abramzon Y; Conforti FL; Giannini F; Corbo M; Sabatelli M
    Brain; 2012 Mar; 135(Pt 3):784-93. PubMed ID: 22366794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2.
    Cagnoli C; Mariotti C; Taroni F; Seri M; Brussino A; Michielotto C; Grisoli M; Di Bella D; Migone N; Gellera C; Di Donato S; Brusco A
    Brain; 2006 Jan; 129(Pt 1):235-42. PubMed ID: 16251216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37.
    Corral-Juan M; Serrano-Munuera C; Rábano A; Cota-González D; Segarra-Roca A; Ispierto L; Cano-Orgaz AT; Adarmes AD; Méndez-Del-Barrio C; Jesús S; Mir P; Volpini V; Alvarez-Ramo R; Sánchez I; Matilla-Dueñas A
    Brain; 2018 Jul; 141(7):1981-1997. PubMed ID: 29939198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antisense Oligonucleotides Reduce RNA Foci in Spinocerebellar Ataxia 36 Patient iPSCs.
    Matsuzono K; Imamura K; Murakami N; Tsukita K; Yamamoto T; Izumi Y; Kaji R; Ohta Y; Yamashita T; Abe K; Inoue H
    Mol Ther Nucleic Acids; 2017 Sep; 8():211-219. PubMed ID: 28918022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.