These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 21683711)
1. Restricted occupancy models for neutralization of HIV virions and populations. Magnus C; Regoes RR J Theor Biol; 2011 Aug; 283(1):192-202. PubMed ID: 21683711 [TBL] [Abstract][Full Text] [Related]
2. Estimating the stoichiometry of HIV neutralization. Magnus C; Regoes RR PLoS Comput Biol; 2010 Mar; 6(3):e1000713. PubMed ID: 20333245 [TBL] [Abstract][Full Text] [Related]
3. The HIV-1 Entry Process: A Stoichiometric View. Brandenberg OF; Magnus C; Regoes RR; Trkola A Trends Microbiol; 2015 Dec; 23(12):763-774. PubMed ID: 26541228 [TBL] [Abstract][Full Text] [Related]
4. Inter-subtype cross-neutralizing antibodies recognize epitopes on cell-associated HIV-1 virions. Donners H; Davis D; Willems B; van der Groen G J Med Virol; 2003 Feb; 69(2):173-81. PubMed ID: 12683404 [TBL] [Abstract][Full Text] [Related]
5. Binding of antibodies to virion-associated gp120 molecules of primary-like human immunodeficiency virus type 1 (HIV-1) isolates: effect on HIV-1 infection of macrophages and peripheral blood mononuclear cells. Stamatatos L; Zolla-Pazner S; Gorny MK; Cheng-Mayer C Virology; 1997 Mar; 229(2):360-9. PubMed ID: 9126249 [TBL] [Abstract][Full Text] [Related]
6. Paradoxical suppression of poly-specific broadly neutralizing antibodies in the presence of strain-specific neutralizing antibodies following HIV infection. Ciupe SM; De Leenheer P; Kepler TB J Theor Biol; 2011 May; 277(1):55-66. PubMed ID: 21315731 [TBL] [Abstract][Full Text] [Related]
7. Epitopes corresponding to the envelope genetic subtype are present on the surface of free virions of HIV-1 group M primary isolates and can be detected in neutralization assays with extended incubation phases. Davis D; Donners H; Willems B; Vermoesen T; Heyndrickx L; Colebunders R; van der Groen G J Med Virol; 2003 Nov; 71(3):332-42. PubMed ID: 12966537 [TBL] [Abstract][Full Text] [Related]
8. A human IgG1 (b12) specific for the CD4 binding site of HIV-1 neutralizes by inhibiting the virus fusion entry process, but b12 Fab neutralizes by inhibiting a postfusion event. McInerney TL; McLain L; Armstrong SJ; Dimmock NJ Virology; 1997 Jul; 233(2):313-26. PubMed ID: 9217055 [TBL] [Abstract][Full Text] [Related]
9. Challenges for structure-based HIV vaccine design. Schief WR; Ban YE; Stamatatos L Curr Opin HIV AIDS; 2009 Sep; 4(5):431-40. PubMed ID: 20048708 [TBL] [Abstract][Full Text] [Related]
11. Role of cellular adhesion molecules in HIV type 1 infection and their impact on virus neutralization. Hioe CE; Bastiani L; Hildreth JE; Zolla-Pazner S AIDS Res Hum Retroviruses; 1998 Oct; 14 Suppl 3():S247-54. PubMed ID: 9814951 [TBL] [Abstract][Full Text] [Related]
12. Interaction between virion-bound host intercellular adhesion molecule-1 and the high-affinity state of lymphocyte function-associated antigen-1 on target cells renders R5 and X4 isolates of human immunodeficiency virus type 1 more refractory to neutralization. Fortin JF; Cantin R; Bergeron MG; Tremblay MJ Virology; 2000 Mar; 268(2):493-503. PubMed ID: 10704357 [TBL] [Abstract][Full Text] [Related]
13. Prevalence of cross-reactive HIV-1-neutralizing activity in HIV-1-infected patients with rapid or slow disease progression. van Gils MJ; Euler Z; Schweighardt B; Wrin T; Schuitemaker H AIDS; 2009 Nov; 23(18):2405-14. PubMed ID: 19770692 [TBL] [Abstract][Full Text] [Related]
14. Predicting HIV-1 transmission and antibody neutralization efficacy in vivo from stoichiometric parameters. Brandenberg OF; Magnus C; Rusert P; Günthard HF; Regoes RR; Trkola A PLoS Pathog; 2017 May; 13(5):e1006313. PubMed ID: 28472201 [TBL] [Abstract][Full Text] [Related]
15. Infection of human peripheral blood mononuclear cells by erythrocyte-bound HIV-1: effects of antibodies and complement. Beck Z; Brown BK; Matyas GR; Polonis VR; Rao M; Alving CR Virology; 2011 Apr; 412(2):441-7. PubMed ID: 21334707 [TBL] [Abstract][Full Text] [Related]
16. Modeling how many envelope glycoprotein trimers per virion participate in human immunodeficiency virus infectivity and its neutralization by antibody. Klasse PJ Virology; 2007 Dec; 369(2):245-62. PubMed ID: 17825343 [TBL] [Abstract][Full Text] [Related]
17. Antibody Neutralization of HIV-1 Crossing the Blood-Brain Barrier. Lorin V; Danckaert A; Porrot F; Schwartz O; Afonso PV; Mouquet H mBio; 2020 Oct; 11(5):. PubMed ID: 33082263 [TBL] [Abstract][Full Text] [Related]
18. Emergence of monoclonal antibody b12-resistant human immunodeficiency virus type 1 variants during natural infection in the absence of humoral or cellular immune pressure. Bunnik EM; van Gils MJ; Lobbrecht MS; Pisas L; Nanlohy NM; van Baarle D; van Nuenen AC; Hessell AJ; Schuitemaker H J Gen Virol; 2010 May; 91(Pt 5):1354-64. PubMed ID: 20053822 [TBL] [Abstract][Full Text] [Related]
19. Neutralization and enhancement of in vitro and in vivo HIV and simian immunodeficiency virus infections. Robinson WE; Mitchell WM AIDS; 1990; 4 Suppl 1():S151-62. PubMed ID: 2152561 [TBL] [Abstract][Full Text] [Related]
20. The antigenic structure of the HIV gp120 envelope glycoprotein. Wyatt R; Kwong PD; Desjardins E; Sweet RW; Robinson J; Hendrickson WA; Sodroski JG Nature; 1998 Jun; 393(6686):705-11. PubMed ID: 9641684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]