These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21683740)

  • 1. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids.
    Lange C; Mustafi N; Frunzke J; Kennerknecht N; Wessel M; Bott M; Wendisch VF
    J Biotechnol; 2012 Apr; 158(4):231-41. PubMed ID: 21683740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing l-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE.
    Yin L; Shi F; Hu X; Chen C; Wang X
    J Appl Microbiol; 2013 May; 114(5):1369-77. PubMed ID: 23331988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of methionine export in Corynebacterium glutamicum.
    Trötschel C; Deutenberg D; Bathe B; Burkovski A; Krämer R
    J Bacteriol; 2005 Jun; 187(11):3786-94. PubMed ID: 15901702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family.
    Kennerknecht N; Sahm H; Yen MR; Pátek M; Saier Jr MH; Eggeling L
    J Bacteriol; 2002 Jul; 184(14):3947-56. PubMed ID: 12081967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine.
    Qin T; Hu X; Hu J; Wang X
    Biotechnol Appl Biochem; 2015; 62(4):563-73. PubMed ID: 25196586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the Actinobacillus pleuropneumoniae leucine-responsive regulatory protein and its involvement in the regulation of in vivo-induced genes.
    Wagner TK; Mulks MH
    Infect Immun; 2007 Jan; 75(1):91-103. PubMed ID: 17060463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation.
    Holátko J; Elisáková V; Prouza M; Sobotka M; Nesvera J; Pátek M
    J Biotechnol; 2009 Feb; 139(3):203-10. PubMed ID: 19121344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-affinity uptake system for branched-chain amino acids in Saccharomyces cerevisiae.
    Tullin S; Gjermansen C; Kielland-Brandt MC
    Yeast; 1991 Dec; 7(9):933-41. PubMed ID: 1803818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lrp, a leucine-responsive protein, regulates branched-chain amino acid transport genes in Escherichia coli.
    Haney SA; Platko JV; Oxender DL; Calvo JM
    J Bacteriol; 1992 Jan; 174(1):108-15. PubMed ID: 1729203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids.
    Mustafi N; Grünberger A; Kohlheyer D; Bott M; Frunzke J
    Metab Eng; 2012 Jul; 14(4):449-57. PubMed ID: 22583745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Genomic and Genetic Functional Analysis of Industrial L-Leucine- and L-Valine-Producing
    Ma Y; Chen Q; Cui Y; Du L; Shi T; Xu Q; Ma Q; Xie X; Chen N
    J Microbiol Biotechnol; 2018 Nov; 28(11):1916-1927. PubMed ID: 30562884
    [No Abstract]   [Full Text] [Related]  

  • 12. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production.
    Chen C; Li Y; Hu J; Dong X; Wang X
    Metab Eng; 2015 May; 29():66-75. PubMed ID: 25769288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nucleoprotein activation complex between the leucine-responsive regulatory protein and DNA upstream of the gltBDF operon in Escherichia coli.
    Wiese DE; Ernsting BR; Blumenthal RM; Matthews RG
    J Mol Biol; 1997 Jul; 270(2):152-68. PubMed ID: 9236118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum.
    Elisáková V; Pátek M; Holátko J; Nesvera J; Leyval D; Goergen JL; Delaunay S
    Appl Environ Microbiol; 2005 Jan; 71(1):207-13. PubMed ID: 15640189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of transport proteins on L-isoleucine production with the L-isoleucine-producing strain Corynebacterium glutamicum YILW.
    Xie X; Xu L; Shi J; Xu Q; Chen N
    J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1549-56. PubMed ID: 22733295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli.
    Eggeling L; Sahm H
    Arch Microbiol; 2003 Sep; 180(3):155-60. PubMed ID: 12879215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Corynebacterium glutamicum WM001 to improve l-isoleucine production.
    Zhang Y; Liu Y; Zhang S; Ma W; Wang J; Yin L; Wang X
    Biotechnol Appl Biochem; 2021 Jun; 68(3):568-584. PubMed ID: 32474971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana.
    Schuster J; Binder S
    Plant Mol Biol; 2005 Jan; 57(2):241-54. PubMed ID: 15821880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation of Corynebacterium glutamicum methionine biosynthesis genes in response to methionine supplementation under oxygen deprivation.
    Suda M; Teramoto H; Imamiya T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):505-13. PubMed ID: 18800184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Metabolic engineering of L-valine synthesis and secretory pathways in Corynebacterium glutamicum for higher production].
    Zhang H; Li Y; Wang X
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1606-1619. PubMed ID: 30394028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.