These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 21683741)
1. Development of high-speed and highly efficient butanol production systems from butyric acid with high density of living cells of Clostridium saccharoperbutylacetonicum. Baba S; Tashiro Y; Shinto H; Sonomoto K J Biotechnol; 2012 Feb; 157(4):605-12. PubMed ID: 21683741 [TBL] [Abstract][Full Text] [Related]
2. Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. Tashiro Y; Shinto H; Hayashi M; Baba S; Kobayashi G; Sonomoto K J Biosci Bioeng; 2007 Sep; 104(3):238-40. PubMed ID: 17964492 [TBL] [Abstract][Full Text] [Related]
3. High yield bio-butanol production by solvent-producing bacterial microflora. Cheng CL; Che PY; Chen BY; Lee WJ; Chien LJ; Chang JS Bioresour Technol; 2012 Jun; 113():58-64. PubMed ID: 22244959 [TBL] [Abstract][Full Text] [Related]
4. Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum. Oshiro M; Hanada K; Tashiro Y; Sonomoto K Appl Microbiol Biotechnol; 2010 Jul; 87(3):1177-85. PubMed ID: 20502892 [TBL] [Abstract][Full Text] [Related]
5. High production of acetone-butanol-ethanol with high cell density culture by cell-recycling and bleeding. Tashiro Y; Takeda K; Kobayashi G; Sonomoto K J Biotechnol; 2005 Nov; 120(2):197-206. PubMed ID: 16105702 [TBL] [Abstract][Full Text] [Related]
6. Continuous butanol fermentation from xylose with high cell density by cell recycling system. Zheng J; Tashiro Y; Yoshida T; Gao M; Wang Q; Sonomoto K Bioresour Technol; 2013 Feb; 129():360-5. PubMed ID: 23262012 [TBL] [Abstract][Full Text] [Related]
7. Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. Du Y; Jiang W; Yu M; Tang IC; Yang ST Biotechnol Bioeng; 2015 Apr; 112(4):705-15. PubMed ID: 25363722 [TBL] [Abstract][Full Text] [Related]
8. Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Thang VH; Kanda K; Kobayashi G Appl Biochem Biotechnol; 2010 May; 161(1-8):157-70. PubMed ID: 19771401 [TBL] [Abstract][Full Text] [Related]
9. Adenine Addition Restores Cell Viability and Butanol Production in Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) Cultivated at 37°C. Kiyoshi K; Kawashima S; Nobuki K; Kadokura T; Nakazato A; Suzuki KI; Nakayama S Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130303 [TBL] [Abstract][Full Text] [Related]
10. Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Malaviya A; Jang YS; Lee SY Appl Microbiol Biotechnol; 2012 Feb; 93(4):1485-94. PubMed ID: 22052388 [TBL] [Abstract][Full Text] [Related]
11. Direct conversion of sugars and organic acids to biobutanol by non-growing cells of Clostridium spp. incubated in a nitrogen-free medium. Loyarkat S; Cheirsilp B; Umsakul K Appl Biochem Biotechnol; 2013 Dec; 171(7):1726-38. PubMed ID: 23996124 [TBL] [Abstract][Full Text] [Related]
12. High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. Tashiro Y; Takeda K; Kobayashi G; Sonomoto K; Ishizaki A; Yoshino S J Biosci Bioeng; 2004; 98(4):263-8. PubMed ID: 16233703 [TBL] [Abstract][Full Text] [Related]
13. Kinetic modeling of butyric acid effects on butanol fermentation by Clostridium saccharoperbutylacetonicum. Zhou Q; Liu Y; Yuan W N Biotechnol; 2020 Mar; 55():118-126. PubMed ID: 31626983 [TBL] [Abstract][Full Text] [Related]
14. Utilization of excess sludge by acetone-butanol-ethanol fermentation employing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Kobayashi G; Eto K; Tashiro Y; Okubo K; Sonomoto K; Ishizaki A J Biosci Bioeng; 2005 May; 99(5):517-9. PubMed ID: 16233826 [TBL] [Abstract][Full Text] [Related]
15. Production of butanol from starch-based waste packing peanuts and agricultural waste. Jesse TW; Ezeji TC; Qureshi N; Blaschek HP J Ind Microbiol Biotechnol; 2002 Sep; 29(3):117-23. PubMed ID: 12242632 [TBL] [Abstract][Full Text] [Related]
16. Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal. Richter H; Qureshi N; Heger S; Dien B; Cotta MA; Angenent LT Biotechnol Bioeng; 2012 Apr; 109(4):913-21. PubMed ID: 22095002 [TBL] [Abstract][Full Text] [Related]
17. Enhancing butanol production with Clostridium pasteurianum CH4 using sequential glucose-glycerol addition and simultaneous dual-substrate cultivation strategies. Kao WC; Lin DS; Cheng CL; Chen BY; Lin CY; Chang JS Bioresour Technol; 2013 May; 135():324-30. PubMed ID: 23127835 [TBL] [Abstract][Full Text] [Related]
18. Butanol production from thin stillage using Clostridium pasteurianum. Ahn JH; Sang BI; Um Y Bioresour Technol; 2011 Apr; 102(7):4934-7. PubMed ID: 21316947 [TBL] [Abstract][Full Text] [Related]
19. Effect of exogenous electron shuttles on growth and fermentative metabolism in Clostridium sp. BC1. Yarlagadda VN; Gupta A; Dodge CJ; Francis AJ Bioresour Technol; 2012 Mar; 108():295-9. PubMed ID: 22273516 [TBL] [Abstract][Full Text] [Related]
20. Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Al-Shorgani NK; Kalil MS; Yusoff WM Bioprocess Biosyst Eng; 2012 Jun; 35(5):817-26. PubMed ID: 22147105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]