These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 21683812)
21. p53-dependent repression of the human MCL-1 gene encoding an anti-apoptotic member of the BCL-2 family: the role of Sp1 and of basic transcription factor binding sites in the MCL-1 promoter. Pietrzak M; Puzianowska-Kuznicka M Biol Chem; 2008 Apr; 389(4):383-93. PubMed ID: 18208354 [TBL] [Abstract][Full Text] [Related]
22. Repression of new p53 targets revealed by ChIP on chip experiments. Ceribelli M; Alcalay M; Viganò MA; Mantovani R Cell Cycle; 2006 May; 5(10):1102-10. PubMed ID: 16721047 [TBL] [Abstract][Full Text] [Related]
23. Suppressing activity of tributyrin on hepatocarcinogenesis is associated with inhibiting the p53-CRM1 interaction and changing the cellular compartmentalization of p53 protein. Ortega JF; de Conti A; Tryndyak V; Furtado KS; Heidor R; Horst MA; Fernandes LH; Tavares PE; Pogribna M; Shpyleva S; Beland FA; Pogribny IP; Moreno FS Oncotarget; 2016 Apr; 7(17):24339-47. PubMed ID: 27013579 [TBL] [Abstract][Full Text] [Related]
24. Cocoa flavanol metabolites activate HNF-3β, Sp1, and NFY-mediated transcription of apolipoprotein AI in human cells. Oleaga C; Ciudad CJ; Izquierdo-Pulido M; Noé V Mol Nutr Food Res; 2013 Jun; 57(6):986-95. PubMed ID: 23293065 [TBL] [Abstract][Full Text] [Related]
25. Characterization of the human topoisomerase IIbeta (TOP2B) promoter activity: essential roles of the nuclear factor-Y (NF-Y)- and specificity protein-1 (Sp1)-binding sites. Lok CN; Lang AJ; Mirski SE; Cole SP Biochem J; 2002 Dec; 368(Pt 3):741-51. PubMed ID: 12197834 [TBL] [Abstract][Full Text] [Related]
26. Doxorubicin promotes transcriptional upregulation of Cdc25B in cancer cells by releasing Sp1 from the promoter. Dalvai M; Mondesert O; Bugler B; Manenti S; Ducommun B; Dozier C Oncogene; 2013 Oct; 32(42):5123-8. PubMed ID: 23160377 [TBL] [Abstract][Full Text] [Related]
27. Regulation of the cyclin-dependent kinase inhibitor 1A gene (CDKN1A) by the repressor BOZF1 through inhibition of p53 acetylation and transcription factor Sp1 binding. Kim MK; Jeon BN; Koh DI; Kim KS; Park SY; Yun CO; Hur MW J Biol Chem; 2013 Mar; 288(10):7053-64. PubMed ID: 23329847 [TBL] [Abstract][Full Text] [Related]
28. Adenoviral expression of p53 represses telomerase activity through down-regulation of human telomerase reverse transcriptase transcription. Kanaya T; Kyo S; Hamada K; Takakura M; Kitagawa Y; Harada H; Inoue M Clin Cancer Res; 2000 Apr; 6(4):1239-47. PubMed ID: 10778946 [TBL] [Abstract][Full Text] [Related]
29. Basal transcription of the human TBX3 gene, a key developmental regulator which is overexpressed in several cancers, requires functional NF-Y and Sp1 sites. Smith J; Mowla S; Prince S Gene; 2011 Oct; 486(1-2):41-6. PubMed ID: 21784138 [TBL] [Abstract][Full Text] [Related]
30. Inhibition of Crm1-p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation. Kanai M; Hanashiro K; Kim SH; Hanai S; Boulares AH; Miwa M; Fukasawa K Nat Cell Biol; 2007 Oct; 9(10):1175-83. PubMed ID: 17891139 [TBL] [Abstract][Full Text] [Related]
31. Introduction of p16INK4a inhibits telomerase activity through transcriptional suppression of human telomerase reverse transcriptase expression in human gliomas. Saito M; Nakagawa K; Hamada K; Hirose S; Harada H; Kohno S; Nagato S; Ohnishi T Int J Oncol; 2004 May; 24(5):1213-20. PubMed ID: 15067344 [TBL] [Abstract][Full Text] [Related]
32. The Aspergillus nidulans multimeric CCAAT binding complex AnCF is negatively autoregulated via its hapB subunit gene. Steidl S; Hynes MJ; Brakhage AA J Mol Biol; 2001 Mar; 306(4):643-53. PubMed ID: 11243777 [TBL] [Abstract][Full Text] [Related]
33. Transcriptional regulation of estrogen receptor-alpha by p53 in human breast cancer cells. Shirley SH; Rundhaug JE; Tian J; Cullinan-Ammann N; Lambertz I; Conti CJ; Fuchs-Young R Cancer Res; 2009 Apr; 69(8):3405-14. PubMed ID: 19351845 [TBL] [Abstract][Full Text] [Related]
34. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Di Agostino S; Strano S; Emiliozzi V; Zerbini V; Mottolese M; Sacchi A; Blandino G; Piaggio G Cancer Cell; 2006 Sep; 10(3):191-202. PubMed ID: 16959611 [TBL] [Abstract][Full Text] [Related]
35. Involvement of NF-Y and Sp1 binding sequences in basal transcription of the human telomerase RNA gene. Zhao J; Bilsland A; Hoare SF; Keith WN FEBS Lett; 2003 Feb; 536(1-3):111-9. PubMed ID: 12586348 [TBL] [Abstract][Full Text] [Related]
36. Tumor suppressor protein p53-mediated repression of human mitotic centromere-associated kinesin gene expression is exerted via down-regulation of Sp1 level. Jun DY; Lee JY; Park HS; Lee YH; Kim YH PLoS One; 2017; 12(12):e0189698. PubMed ID: 29244835 [TBL] [Abstract][Full Text] [Related]
37. ZBTB2, a novel master regulator of the p53 pathway. Jeon BN; Choi WI; Yu MY; Yoon AR; Kim MH; Yun CO; Hur MW J Biol Chem; 2009 Jul; 284(27):17935-46. PubMed ID: 19380588 [TBL] [Abstract][Full Text] [Related]
38. Sp1 regulates Raf/MEK/ERK-induced p21(CIP1) transcription in TP53-mutated cancer cells. Karkhanis M; Park JI Cell Signal; 2015 Mar; 27(3):479-86. PubMed ID: 25595558 [TBL] [Abstract][Full Text] [Related]
39. Transcription factors Oct-1 and NF-YA regulate the p53-independent induction of the GADD45 following DNA damage. Jin S; Fan F; Fan W; Zhao H; Tong T; Blanck P; Alomo I; Rajasekaran B; Zhan Q Oncogene; 2001 May; 20(21):2683-90. PubMed ID: 11420680 [TBL] [Abstract][Full Text] [Related]
40. Subcellular Distribution of p53 by the p53-Responsive lncRNA Mitra S; Muralidharan SV; Di Marco M; Juvvuna PK; Kosalai ST; Reischl S; Jachimowicz D; Subhash S; Raimondi I; Kurian L; Huarte M; Kogner P; Fischer M; Johnsen JI; Mondal T; Kanduri C Cancer Res; 2021 Mar; 81(6):1457-1471. PubMed ID: 33372039 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]