These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21683999)

  • 41. The biocompatibility of PluronicF127 fibrinogen-based hydrogels.
    Shachaf Y; Gonen-Wadmany M; Seliktar D
    Biomaterials; 2010 Apr; 31(10):2836-47. PubMed ID: 20092890
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair.
    Söntjens SH; Nettles DL; Carnahan MA; Setton LA; Grinstaff MW
    Biomacromolecules; 2006 Jan; 7(1):310-6. PubMed ID: 16398530
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation.
    Seidlits SK; Khaing ZZ; Petersen RR; Nickels JD; Vanscoy JE; Shear JB; Schmidt CE
    Biomaterials; 2010 May; 31(14):3930-40. PubMed ID: 20171731
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of cellular morphology using temperature-responsive hydrogel for integrin-mediated mechanical force stimulation.
    Yamaki K; Harada I; Goto M; Cho CS; Akaike T
    Biomaterials; 2009 Mar; 30(7):1421-7. PubMed ID: 19100616
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation.
    Novikova LN; Mosahebi A; Wiberg M; Terenghi G; Kellerth JO; Novikov LN
    J Biomed Mater Res A; 2006 May; 77(2):242-52. PubMed ID: 16392134
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering.
    Gonen-Wadmany M; Oss-Ronen L; Seliktar D
    Biomaterials; 2007 Sep; 28(26):3876-86. PubMed ID: 17576008
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue.
    Risbud M; Ringe J; Bhonde R; Sittinger M
    Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cellular dynamics of epithelial clefting during branching morphogenesis of the mouse submandibular gland.
    Kadoya Y; Yamashina S
    Dev Dyn; 2010 Jun; 239(6):1739-47. PubMed ID: 20503369
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels.
    Mahoney MJ; Anseth KS
    Biomaterials; 2006 Apr; 27(10):2265-74. PubMed ID: 16318872
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Morphologic and transcriptomic comparison of adipose- and bone-marrow-derived porcine stem cells cultured in alginate hydrogels.
    Kim D; Monaco E; Maki A; de Lima AS; Kong HJ; Hurley WL; Wheeler MB
    Cell Tissue Res; 2010 Sep; 341(3):359-70. PubMed ID: 20680346
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion.
    Thompson MT; Berg MC; Tobias IS; Rubner MF; Van Vliet KJ
    Biomaterials; 2005 Dec; 26(34):6836-45. PubMed ID: 15972236
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface.
    He L; Lin D; Wang Y; Xiao Y; Che J
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):273-9. PubMed ID: 21676598
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L; Seliktar D
    Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics.
    Al-Rekabi Z; Pelling AE
    Phys Biol; 2013 Dec; 10(6):066003. PubMed ID: 24164970
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The WNT/MYB pathway suppresses KIT expression to control the timing of salivary proacinar differentiation and duct formation.
    Matsumoto S; Kurimoto T; Taketo MM; Fujii S; Kikuchi A
    Development; 2016 Jul; 143(13):2311-24. PubMed ID: 27161149
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In situ forming physical hydrogels for three-dimensional tissue morphogenesis.
    Liu Y; Liu B; Riesberg JJ; Shen W
    Macromol Biosci; 2011 Oct; 11(10):1325-30. PubMed ID: 21830299
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MSCs feeder layers induce SMG self-organization and branching morphogenesis.
    Farahat M; Sathi GA; Hara ES; Taketa H; Kuboki T; Matsumoto T
    PLoS One; 2017; 12(4):e0176453. PubMed ID: 28448600
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Elastic hydrogel as a sensor for detection of mechanical stress generated by single cells grown in three-dimensional environment.
    Huang J; Wang L; Xiong C; Yuan F
    Biomaterials; 2016 Aug; 98():103-12. PubMed ID: 27182812
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Distinct impacts of substrate elasticity and ligand affinity on traction force evolution.
    Müller C; Pompe T
    Soft Matter; 2016 Jan; 12(1):272-80. PubMed ID: 26451588
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthetic materials in the study of cell response to substrate rigidity.
    Nemir S; West JL
    Ann Biomed Eng; 2010 Jan; 38(1):2-20. PubMed ID: 19816774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.