BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21684220)

  • 21. Sympathetic-mediated hypertension of awake juvenile rats submitted to chronic intermittent hypoxia is not linked to baroreflex dysfunction.
    Zoccal DB; Bonagamba LG; Paton JF; Machado BH
    Exp Physiol; 2009 Sep; 94(9):972-83. PubMed ID: 19578126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heme oxygenase-1-dependent central cardiorespiratory adaptations to chronic intermittent hypoxia in mice.
    Sunderram J; Semmlow J; Patel P; Rao H; Chun G; Agarwala P; Bhaumik M; Le-Hoang O; Lu SE; Neubauer JA
    J Appl Physiol (1985); 2016 Oct; 121(4):944-952. PubMed ID: 27609199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Altered sympathetic reflexes and vascular reactivity in rats after exposure to chronic intermittent hypoxia.
    Silva AQ; Schreihofer AM
    J Physiol; 2011 Mar; 589(Pt 6):1463-76. PubMed ID: 21242253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrophysiological properties of laryngeal motoneurones in rats submitted to chronic intermittent hypoxia.
    Moraes DJ; Machado BH
    J Physiol; 2015 Feb; 593(3):619-34. PubMed ID: 25433075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exposure to cyclic intermittent hypoxia increases expression of functional NMDA receptors in the rat carotid body.
    Liu Y; Ji ES; Xiang S; Tamisier R; Tong J; Huang J; Weiss JW
    J Appl Physiol (1985); 2009 Jan; 106(1):259-67. PubMed ID: 18927268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunoreactivity for neuronal NOS and fluorescent indication of NO formation in the NTS of juvenile rats submitted to chronic intermittent hypoxia.
    Pajolla GP; Accorsi-Mendonça D; Lunardi CN; Bendhack LM; Machado BH; Llewellyn-Smith IJ
    Auton Neurosci; 2009 Jun; 148(1-2):55-62. PubMed ID: 19345616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased cardiac output contributes to the development of chronic intermittent hypoxia-induced hypertension.
    Lucking EF; O'Halloran KD; Jones JF
    Exp Physiol; 2014 Oct; 99(10):1312-24. PubMed ID: 25063839
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chronic administration of olmesartan attenuates the exaggerated pressor response to glutamate in the rostral ventrolateral medulla of SHR.
    Lin Y; Matsumura K; Kagiyama S; Fukuhara M; Fujii K; Iida M
    Brain Res; 2005 Oct; 1058(1-2):161-6. PubMed ID: 16143317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purinergic signalling in the medullary mechanisms of respiratory control in the rat: respiratory neurones express the P2X2 receptor subunit.
    Gourine AV; Atkinson L; Deuchars J; Spyer KM
    J Physiol; 2003 Oct; 552(Pt 1):197-211. PubMed ID: 12878756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Are L-glutamate and ATP cotransmitters of the peripheral chemoreflex in the rat nucleus tractus solitarius?
    Accorsi-Mendonça D; Bonagamba LG; Leão RM; Machado BH
    Exp Physiol; 2009 Jan; 94(1):38-45. PubMed ID: 18931046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sex differences in the respiratory-sympathetic coupling in rats exposed to chronic intermittent hypoxia.
    Souza GMPR; Amorim MR; Moraes DJA; Machado BH
    Respir Physiol Neurobiol; 2018 Oct; 256():109-118. PubMed ID: 28893610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The effects of chronic intermittent hypoxia on blood pressure and sympathetic nerve activity in rats].
    Wan NS; Chen BY; Feng J; Li S; Zhou W; Zhang Z; Guo R
    Zhonghua Jie He He Hu Xi Za Zhi; 2012 Jan; 35(1):29-32. PubMed ID: 22455939
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo and in vitro responses of neurons in the ventrolateral medulla to hypoxia.
    Nolan PC; Waldrop TG
    Brain Res; 1993 Dec; 630(1-2):101-14. PubMed ID: 8118678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glutamatergic receptors of the rostral ventrolateral medulla are involved in the ventilatory response to hypoxia.
    de Paula PM; Branco LG
    Respir Physiol Neurobiol; 2005 Apr; 146(2-3):125-34. PubMed ID: 15766901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intermittent hypoxia-induced sensitization of central chemoreceptors contributes to sympathetic nerve activity during late expiration in rats.
    Molkov YI; Zoccal DB; Moraes DJ; Paton JF; Machado BH; Rybak IA
    J Neurophysiol; 2011 Jun; 105(6):3080-91. PubMed ID: 21471394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differences in respiratory changes and Fos expression in the ventrolateral medulla of rats exposed to hypoxia, hypercapnia, and hypercapnic hypoxia.
    Wakai J; Takamura D; Morinaga R; Nakamuta N; Yamamoto Y
    Respir Physiol Neurobiol; 2015 Aug; 215():64-72. PubMed ID: 26001678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fos expression by glutamatergic neurons of the solitary tract nucleus after phenylephrine-induced hypertension in rats.
    Weston M; Wang H; Stornetta RL; Sevigny CP; Guyenet PG
    J Comp Neurol; 2003 Jun; 460(4):525-41. PubMed ID: 12717712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pre- and post-inspiratory neurons change their firing properties in female rats exposed to chronic intermittent hypoxia.
    Souza GMPR; Barnett WH; Amorim MR; Lima-Silveira L; Moraes DJA; Molkov YI; Machado BH
    Neuroscience; 2019 May; 406():467-486. PubMed ID: 30930131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Medullary respiratory network drives sympathetic overactivity and hypertension in rats submitted to chronic intermittent hypoxia.
    Moraes DJ; Zoccal DB; Machado BH
    Hypertension; 2012 Dec; 60(6):1374-80. PubMed ID: 23108658
    [No Abstract]   [Full Text] [Related]  

  • 40. Cyclic intermittent hypoxia enhances renal sympathetic response to ICV ET-1 in conscious rats.
    Huang J; Xie T; Wu Y; Li X; Lusina S; Ji ES; Xiang S; Liu Y; Gautam S; Weiss JW
    Respir Physiol Neurobiol; 2010 Apr; 171(2):83-9. PubMed ID: 20227529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.