These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 21684312)

  • 1. Effect of molecular mobility on coupled enzymatic reactions involving cofactor regeneration using nanoparticle-attached enzymes.
    Zheng M; Zhang S; Ma G; Wang P
    J Biotechnol; 2011 Jul; 154(4):274-80. PubMed ID: 21684312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic field intensified bi-enzyme system with in situ cofactor regeneration supported by magnetic nanoparticles.
    Zheng M; Su Z; Ji X; Ma G; Wang P; Zhang S
    J Biotechnol; 2013 Oct; 168(2):212-7. PubMed ID: 23756150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration.
    Liu W; Zhang S; Wang P
    J Biotechnol; 2009 Jan; 139(1):102-7. PubMed ID: 19000722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enabling multienzyme biocatalysis using nanoporous materials.
    El-Zahab B; Jia H; Wang P
    Biotechnol Bioeng; 2004 Jul; 87(2):178-83. PubMed ID: 15236246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle-tethered NADH for production of methanol from CO(2) catalyzed by coimmobilized enzymes.
    El-Zahab B; Donnelly D; Wang P
    Biotechnol Bioeng; 2008 Feb; 99(3):508-14. PubMed ID: 17680680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multi-enzyme system with in situ cofactor regeneration.
    Zhang Y; Gao F; Zhang SP; Su ZG; Ma GH; Wang P
    Bioresour Technol; 2011 Jan; 102(2):1837-43. PubMed ID: 20947342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors.
    Zhou H; Zhang Z; Yu P; Su L; Ohsaka T; Mao L
    Langmuir; 2010 Apr; 26(8):6028-32. PubMed ID: 20121055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic synthesis of some (15)N-labelled L-amino acids.
    Chiriac M; Lupan I; Popa F; Palibroda N; Popescu O
    Isotopes Environ Health Stud; 2010 Jun; 46(2):249-54. PubMed ID: 20582794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotube-supported bioproduction of 4-hydroxy-2-butanone via in situ cofactor regeneration.
    Wang L; Zhang H; Ching CB; Chen Y; Jiang R
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1233-41. PubMed ID: 22116631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-tethered NAD(+) with in situ cofactor regeneration.
    Li Y; Liang H; Sun L; Wu J; Yuan Q
    Biotechnol Lett; 2013 Jun; 35(6):915-9. PubMed ID: 23417259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for preparation of MNP@CS-tethered coenzyme for coupled oxidoreductase system.
    Chen G; Wu Z; Ma Y
    J Biotechnol; 2015 Feb; 196-197():52-7. PubMed ID: 25617681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoporous silica glass for the immobilization of interactive enzyme systems.
    Buthe A; Wu S; Wang P
    Methods Mol Biol; 2011; 679():37-48. PubMed ID: 20865387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems.
    Hummel W; Gröger H
    J Biotechnol; 2014 Dec; 191():22-31. PubMed ID: 25102236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cofactor regeneration for sustainable enzymatic biosynthesis.
    Liu W; Wang P
    Biotechnol Adv; 2007; 25(4):369-84. PubMed ID: 17459647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications.
    Yan YM; Yehezkeli O; Willner I
    Chemistry; 2007; 13(36):10168-75. PubMed ID: 17937376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and characterization of glutamate dehydrogenase monolayers on silicon supports.
    Blasi L; Longo L; Pompa PP; Manna L; Ciccarella G; Vasapollo G; Cingolani R; Rinaldi R; Rizzello A; Acierno R; Storelli C; Maffia M
    Biosens Bioelectron; 2005 Jul; 21(1):30-40. PubMed ID: 15967348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase.
    Mouri T; Shimizu T; Kamiya N; Goto M; Ichinose H
    Biotechnol Prog; 2009; 25(5):1372-8. PubMed ID: 19725101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of electrochemical regeneration upon the enzymatic catalysis of a thermodynamically unfavorable reaction.
    Laval JM; Moiroux J; Bourdillon C
    Biotechnol Bioeng; 1991 Oct; 38(7):788-96. PubMed ID: 18600805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A thionine-based reversible redox sensor in a sequential injection system.
    Passos ML; Saraiva ML; Lima JL
    Anal Chim Acta; 2010 May; 668(1):41-6. PubMed ID: 20457300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization.
    Johnson PA; Park HJ; Driscoll AJ
    Methods Mol Biol; 2011; 679():183-91. PubMed ID: 20865397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.