These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 21684330)
1. Aging and calorie restriction modulate yeast redox state, oxidized protein removal, and the ubiquitin-proteasome system. da Cunha FM; Demasi M; Kowaltowski AJ Free Radic Biol Med; 2011 Aug; 51(3):664-70. PubMed ID: 21684330 [TBL] [Abstract][Full Text] [Related]
2. Caloric restriction optimizes the proteasome pathway with aging in rat plantaris muscle: implications for sarcopenia. Hepple RT; Qin M; Nakamoto H; Goto S Am J Physiol Regul Integr Comp Physiol; 2008 Oct; 295(4):R1231-7. PubMed ID: 18703409 [TBL] [Abstract][Full Text] [Related]
3. Protein oxidative modification in the aging organism and the role of the ubiquitin proteasomal system. Kastle M; Grune T Curr Pharm Des; 2011 Dec; 17(36):4007-22. PubMed ID: 22188451 [TBL] [Abstract][Full Text] [Related]
4. Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome? Chen Q; Thorpe J; Dohmen JR; Li F; Keller JN Free Radic Biol Med; 2006 Jan; 40(1):120-6. PubMed ID: 16337885 [TBL] [Abstract][Full Text] [Related]
5. Proteasomal defense of oxidative protein modifications. Poppek D; Grune T Antioxid Redox Signal; 2006; 8(1-2):173-84. PubMed ID: 16487051 [TBL] [Abstract][Full Text] [Related]
6. Redox control of the ubiquitin-proteasome system: from molecular mechanisms to functional significance. Kriegenburg F; Poulsen EG; Koch A; Krüger E; Hartmann-Petersen R Antioxid Redox Signal; 2011 Oct; 15(8):2265-99. PubMed ID: 21314436 [TBL] [Abstract][Full Text] [Related]
7. Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae. Costa V; Quintanilha A; Moradas-Ferreira P IUBMB Life; 2007; 59(4-5):293-8. PubMed ID: 17505968 [TBL] [Abstract][Full Text] [Related]
8. Age-dependent effects of caloric restriction on mTOR and ubiquitin-proteasome pathways in skeletal muscles. Chen CN; Liao YH; Tsai SC; Thompson LV Geroscience; 2019 Dec; 41(6):871-880. PubMed ID: 31676964 [TBL] [Abstract][Full Text] [Related]
9. The proteasome and its role in the degradation of oxidized proteins. Jung T; Grune T IUBMB Life; 2008 Nov; 60(11):743-52. PubMed ID: 18636510 [TBL] [Abstract][Full Text] [Related]
10. Peptides that activate the 20S proteasome by gate opening increased oxidized protein removal and reduced protein aggregation. Dal Vechio FH; Cerqueira F; Augusto O; Lopes R; Demasi M Free Radic Biol Med; 2014 Feb; 67():304-13. PubMed ID: 24291399 [TBL] [Abstract][Full Text] [Related]
11. Low-level caloric restriction rescues proteasome activity and Hsc70 level in liver of aged rats. Bonelli MA; Desenzani S; Cavallini G; Donati A; Romani AA; Bergamini E; Borghetti AF Biogerontology; 2008 Feb; 9(1):1-10. PubMed ID: 17902036 [TBL] [Abstract][Full Text] [Related]
12. Preferential degradation of oxidized proteins by the 20S proteasome may be inhibited in aging and in inflammatory neuromuscular diseases. Davies KJ; Shringarpure R Neurology; 2006 Jan; 66(2 Suppl 1):S93-6. PubMed ID: 16432154 [TBL] [Abstract][Full Text] [Related]
13. An in silico model of the ubiquitin-proteasome system that incorporates normal homeostasis and age-related decline. Proctor CJ; Tsirigotis M; Gray DA BMC Syst Biol; 2007 Mar; 1():17. PubMed ID: 17408507 [TBL] [Abstract][Full Text] [Related]
14. Maintenance of the ubiquitin-proteasome system activity correlates with visible skin benefits. Imbert I; Gondran C; Oberto G; Cucumel K; Dal Farra C; Domloge N Int J Cosmet Sci; 2010 Dec; 32(6):446-57. PubMed ID: 20572889 [TBL] [Abstract][Full Text] [Related]
15. 20S proteasome activity is modified via S-glutathionylation based on intracellular redox status of the yeast Saccharomyces cerevisiae: implications for the degradation of oxidized proteins. Demasi M; Hand A; Ohara E; Oliveira CL; Bicev RN; Bertoncini CA; Netto LE Arch Biochem Biophys; 2014 Sep; 557():65-71. PubMed ID: 24813691 [TBL] [Abstract][Full Text] [Related]
16. Proteasome function in aging and oxidative stress: implications in protein maintenance failure. Farout L; Friguet B Antioxid Redox Signal; 2006; 8(1-2):205-16. PubMed ID: 16487054 [TBL] [Abstract][Full Text] [Related]
17. Life long calorie restriction increases heat shock proteins and proteasome activity in soleus muscles of Fisher 344 rats. Selsby JT; Judge AR; Yimlamai T; Leeuwenburgh C; Dodd SL Exp Gerontol; 2005; 40(1-2):37-42. PubMed ID: 15664730 [TBL] [Abstract][Full Text] [Related]
18. Accumulation of polyubiquitinated proteins: A consequence of early inactivation of the 26S proteasome. Reeg S; Castro JP; Hugo M; Grune T Free Radic Biol Med; 2020 Nov; 160():293-302. PubMed ID: 32822745 [TBL] [Abstract][Full Text] [Related]
19. Calorie restriction upregulated sirtuin 1 by attenuating its ubiquitin degradation in cancer cells. Han L; Zhao G; Wang H; Tong T; Chen J Clin Exp Pharmacol Physiol; 2014 Mar; 41(3):165-8. PubMed ID: 24471483 [TBL] [Abstract][Full Text] [Related]
20. Regulation of proteasome-mediated protein degradation during oxidative stress and aging. Breusing N; Grune T Biol Chem; 2008 Mar; 389(3):203-9. PubMed ID: 18208355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]