These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 21684330)
41. Oxidative challenge enhances REGγ-proteasome-dependent protein degradation. Zhang Y; Liu S; Zuo Q; Wu L; Ji L; Zhai W; Xiao J; Chen J; Li X Free Radic Biol Med; 2015 May; 82():42-9. PubMed ID: 25656993 [TBL] [Abstract][Full Text] [Related]
42. Protein oxidation in aging and the removal of oxidized proteins. Höhn A; König J; Grune T J Proteomics; 2013 Oct; 92():132-59. PubMed ID: 23333925 [TBL] [Abstract][Full Text] [Related]
43. We Are What We Eat: Ubiquitin-Proteasome System (UPS) Modulation Through Dietary Products. Panagiotidou E; Chondrogianni N Adv Exp Med Biol; 2020; 1233():329-348. PubMed ID: 32274765 [TBL] [Abstract][Full Text] [Related]
44. Intracellular distribution of oxidized proteins and proteasome in HT22 cells during oxidative stress. Jung T; Engels M; Kaiser B; Poppek D; Grune T Free Radic Biol Med; 2006 Apr; 40(8):1303-12. PubMed ID: 16631520 [TBL] [Abstract][Full Text] [Related]
45. Role of the ubiquitin-proteasome system in brain ischemia: friend or foe? Caldeira MV; Salazar IL; Curcio M; Canzoniero LM; Duarte CB Prog Neurobiol; 2014 Jan; 112():50-69. PubMed ID: 24157661 [TBL] [Abstract][Full Text] [Related]
46. Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part I--effects of proliferative senescence. Sitte N; Merker K; Von Zglinicki T; Grune T; Davies KJ FASEB J; 2000 Dec; 14(15):2495-502. PubMed ID: 11099467 [TBL] [Abstract][Full Text] [Related]
47. The effect of CYP2E1-dependent oxidant stress on activity of proteasomes in HepG2 cells. Kessova IG; Cederbaum AI J Pharmacol Exp Ther; 2005 Oct; 315(1):304-12. PubMed ID: 16002458 [TBL] [Abstract][Full Text] [Related]
48. Protein oxidation and proteolysis. Bader N; Grune T Biol Chem; 2006; 387(10-11):1351-5. PubMed ID: 17081106 [TBL] [Abstract][Full Text] [Related]
49. Aging and dietary restriction effects on ubiquitination, sumoylation, and the proteasome in the heart. Li F; Zhang L; Craddock J; Bruce-Keller AJ; Dasuri K; Nguyen A; Keller JN Mech Ageing Dev; 2008 Sep; 129(9):515-21. PubMed ID: 18533226 [TBL] [Abstract][Full Text] [Related]
50. Dihydrolipoyl dehydrogenase as a source of reactive oxygen species inhibited by caloric restriction and involved in Saccharomyces cerevisiae aging. Tahara EB; Barros MH; Oliveira GA; Netto LE; Kowaltowski AJ FASEB J; 2007 Jan; 21(1):274-83. PubMed ID: 17110466 [TBL] [Abstract][Full Text] [Related]
51. The Pep4p vacuolar proteinase contributes to the turnover of oxidized proteins but PEP4 overexpression is not sufficient to increase chronological lifespan in Saccharomyces cerevisiae. Marques M; Mojzita D; Amorim MA; Almeida T; Hohmann S; Moradas-Ferreira P; Costa V Microbiology (Reading); 2006 Dec; 152(Pt 12):3595-3605. PubMed ID: 17159212 [TBL] [Abstract][Full Text] [Related]
52. Age-related decline in ubiquitin conjugation in response to oxidative stress in the lens. Shang F; Gong X; Palmer HJ; Nowell TR; Taylor A Exp Eye Res; 1997 Jan; 64(1):21-30. PubMed ID: 9093017 [TBL] [Abstract][Full Text] [Related]
53. Elevated expression of ISG15 in tumor cells interferes with the ubiquitin/26S proteasome pathway. Desai SD; Haas AL; Wood LM; Tsai YC; Pestka S; Rubin EH; Saleem A; Nur-E-Kamal A; Liu LF Cancer Res; 2006 Jan; 66(2):921-8. PubMed ID: 16424026 [TBL] [Abstract][Full Text] [Related]
54. Proteasome synthesis and assembly are required for survival during stationary phase. Chen Q; Thorpe J; Ding Q; El-Amouri IS; Keller JN Free Radic Biol Med; 2004 Sep; 37(6):859-68. PubMed ID: 15304258 [TBL] [Abstract][Full Text] [Related]
55. The stationary phase model of aging in yeast for the study of oxidative stress and age-related neurodegeneration. Chen Q; Ding Q; Keller JN Biogerontology; 2005; 6(1):1-13. PubMed ID: 15834659 [TBL] [Abstract][Full Text] [Related]
56. Hyperhomocysteinemia-induced oxidative stress differentially alters proteasome composition and activities in heart and aorta. Derouiche F; Bôle-Feysot C; Naïmi D; Coëffier M Biochem Biophys Res Commun; 2014 Sep; 452(3):740-5. PubMed ID: 25194809 [TBL] [Abstract][Full Text] [Related]
57. Identification of an EGCG oxidation derivative with proteasome modulatory activity. Bonfili L; Cuccioloni M; Mozzicafreddo M; Cecarini V; Angeletti M; Eleuteri AM Biochimie; 2011 May; 93(5):931-40. PubMed ID: 21354258 [TBL] [Abstract][Full Text] [Related]
58. Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast. Choi JS; Lee CK Biochem Biophys Res Commun; 2013 Sep; 439(1):126-31. PubMed ID: 23942118 [TBL] [Abstract][Full Text] [Related]
59. Oxidative modification of proteasome: identification of an oxidation-sensitive subunit in 26 S proteasome. Ishii T; Sakurai T; Usami H; Uchida K Biochemistry; 2005 Oct; 44(42):13893-901. PubMed ID: 16229478 [TBL] [Abstract][Full Text] [Related]
60. Life span extension and H(2)O(2) resistance elicited by caloric restriction require the peroxiredoxin Tsa1 in Saccharomyces cerevisiae. Molin M; Yang J; Hanzén S; Toledano MB; Labarre J; Nyström T Mol Cell; 2011 Sep; 43(5):823-33. PubMed ID: 21884982 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]