BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 21684880)

  • 1. Associations between leaf structure, orientation, and sunlight exposure in five Western Australian communities.
    Smith W; Bell D; Shepherd K
    Am J Bot; 1998 Jan; 85(1):56. PubMed ID: 21684880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontogenetic differences in mesophyll structure and chlorophyll distribution in Eucalyptus globulus ssp. globulus.
    James SA; Smith WK; Vogelmann TC
    Am J Bot; 1999 Feb; 86(2):198-207. PubMed ID: 21680359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthetic and structural acclimation to light direction in vertical leaves of Silphium terebinthinaceum.
    Poulson ME; DeLucia EH
    Oecologia; 1993 Sep; 95(3):393-400. PubMed ID: 28314016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf architecture and direction of incident light influence mesophyll fluorescence profiles.
    Johnson DM; Smith WK; Vogelmann TC; Brodersen CR
    Am J Bot; 2005 Sep; 92(9):1425-31. PubMed ID: 21646160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation of incident light in Galax urceolata (Diapensiaceae): concerted influence of adaxial and abaxial anthocyanic layers on photoprotection.
    Hughes NM; Smith WK
    Am J Bot; 2007 May; 94(5):784-90. PubMed ID: 21636447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature and water relation patterns in subalpine understory plants.
    Smith WK
    Oecologia; 1981 Mar; 48(3):353-359. PubMed ID: 28309752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic symmetry of sun and shade leaves of different orientations.
    De Lucia EH; Shenoi HD; Naidu SL; Day TA
    Oecologia; 1991 Jun; 87(1):51-57. PubMed ID: 28313351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in the dorso-ventral organization of leaf structure and Kranz anatomy coordinate the control of photosynthesis and associated signalling at the whole leaf level in monocotyledonous species.
    Soares-Cordeiro AS; Driscoll SP; Pellny TK; Olmos E; Arrabaça MC; Foyer CH
    Plant Cell Environ; 2009 Dec; 32(12):1833-44. PubMed ID: 19712063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves.
    Driscoll SP; Prins A; Olmos E; Kunert KJ; Foyer CH
    J Exp Bot; 2006; 57(2):381-90. PubMed ID: 16371401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating near-infrared leaf reflectance from leaf structural characteristics.
    Slaton MR; Raymond Hunt E; Smith WK
    Am J Bot; 2001 Feb; 88(2):278-84. PubMed ID: 11222250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L.
    Wang Y; Noguchi K; Terashima I
    Plant Cell Environ; 2008 Sep; 31(9):1307-16. PubMed ID: 18537998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosystem II efficiency of the palisade and spongy mesophyll in Quercus coccifera using adaxial/abaxial illumination and excitation light sources with wavelengths varying in penetration into the leaf tissue.
    Peguero-Pina JJ; Gil-Pelegrín E; Morales F
    Photosynth Res; 2009 Jan; 99(1):49-61. PubMed ID: 19048387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthesis and resource distribution through plant canopies.
    Niinemets U
    Plant Cell Environ; 2007 Sep; 30(9):1052-71. PubMed ID: 17661747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cuticular conductance of adaxial and abaxial leaf surfaces and its relation to minimum leaf surface conductance.
    Márquez DA; Stuart-Williams H; Farquhar GD; Busch FA
    New Phytol; 2022 Jan; 233(1):156-168. PubMed ID: 34192346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The analysis of the causes of variability of the relationship between leaf dry mass and area in plants].
    Vasfilov SP
    Zh Obshch Biol; 2011; 72(6):436-54. PubMed ID: 22292282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation.
    Niinemets U; Wright IJ; Evans JR
    J Exp Bot; 2009; 60(8):2433-49. PubMed ID: 19255061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stomatal crypts may facilitate diffusion of CO(2) to adaxial mesophyll cells in thick sclerophylls.
    Hassiotou F; Evans JR; Ludwig M; Veneklaas EJ
    Plant Cell Environ; 2009 Nov; 32(11):1596-611. PubMed ID: 19627563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of different water supply on morphology, growth and physiological characteristics of Salix psammophila seedlings in Maowusu sandland, China.
    Xiao CW
    J Environ Sci (China); 2001 Oct; 13(4):411-7. PubMed ID: 11723925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Over-expression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal-contaminated soil.
    Ivanova LA; Ronzhina DA; Ivanov LA; Stroukova LV; Peuke AD; Rennenberg H
    Plant Biol (Stuttg); 2011 Jul; 13(4):649-59. PubMed ID: 21668606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Difference in light-induced increase in ploidy level and cell size between adaxial and abaxial epidermal pavement cells of Phaseolus vulgaris primary leaves.
    Kinoshita I; Sanbe A; Yokomura EI
    J Exp Bot; 2008; 59(6):1419-30. PubMed ID: 18375604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.