These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 21684920)

  • 1. Susceptibility of pollen to UV-B radiation: an assay of 34 taxa.
    Torabinejad J; Caldwell M; Flint S; Durham S
    Am J Bot; 1998 Mar; 85(3):360. PubMed ID: 21684920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Cumulative effect of solar ultraviolet-B radiation on pollen germination and tube growth of 19 species in vitro].
    Feng H; An L; Tan L; Hou Z; Wang X
    Ying Yong Sheng Tai Xue Bao; 2002 Jul; 13(7):814-8. PubMed ID: 12385209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths.
    Koti S; Reddy KR; Reddy VR; Kakani VG; Zhao D
    J Exp Bot; 2005 Feb; 56(412):725-36. PubMed ID: 15611147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors.
    Caldwell MM; Bornman JF; Ballaré CL; Flint SD; Kulandaivelu G
    Photochem Photobiol Sci; 2007 Mar; 6(3):252-66. PubMed ID: 17344961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro.
    He JM; Bai XL; Wang RB; Cao B; She XP
    Physiol Plant; 2007 Oct; 131(2):273-82. PubMed ID: 18251898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased UV-B radiation affects the viability, reactive oxygen species accumulation and antioxidant enzyme activities in maize (Zea mays L.) pollen.
    Wang S; Xie B; Yin L; Duan L; Li Z; Eneji AE; Tsuji W; Tsunekawa A
    Photochem Photobiol; 2010; 86(1):110-6. PubMed ID: 19906093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of enhanced ultraviolet-B radiation on flower, pollen, and nectar production.
    Sampson BJ; Cane JH
    Am J Bot; 1999 Jan; 86(1):108-14. PubMed ID: 21680350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soybean (Glycine max) pollen germination characteristics, flower and pollen morphology in response to enhanced ultraviolet-B radiation.
    Koti S; Reddy KR; Kakani VG; Zhao D; Reddy VR
    Ann Bot; 2004 Dec; 94(6):855-64. PubMed ID: 15466876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of ultraviolet-B radiation and intraspecific competition on growth, pollination success, and lifetime female fitness in Phacelia campanularia and P. purshii (Hydrophyllaceae).
    Conner JK; Neumeier R
    Am J Bot; 2002 Jan; 89(1):103-10. PubMed ID: 21669717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of UV-B radiation on pollen germination and tube growth: A global meta-analysis.
    Cun S; Zhang C; Chen J; Qian L; Sun H; Song B
    Sci Total Environ; 2024 Mar; 915():170097. PubMed ID: 38224898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing genotypic variability of cowpea (Vigna unguiculata [L.] Walp.) to current and projected ultraviolet-B radiation.
    Singh SK; Surabhi GK; Gao W; Reddy KR
    J Photochem Photobiol B; 2008 Nov; 93(2):71-81. PubMed ID: 18723366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The influence of UV-B radiation on reproductive function of Hordeum vulgare L. plants].
    Kravets EA; Grodzinskiĭ DM; Gushcha NI
    Tsitol Genet; 2008; 42(5):9-15. PubMed ID: 19140436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of pollen germination and tube growth to cadmium with special reference to low concentration exposure.
    Xiong ZT; Peng YH
    Ecotoxicol Environ Saf; 2001 Jan; 48(1):51-5. PubMed ID: 11161677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The distribution of calcium in the stigma and style of tobacco during pollen germination and tube growth].
    Xie CT; Qiu YL; Ge LL; Chen SH; Tian HQ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):53-61. PubMed ID: 15692179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation.
    Rozema J; Blokker P; Mayoral Fuertes MA; Broekman R
    Photochem Photobiol Sci; 2009 Sep; 8(9):1233-43. PubMed ID: 19707612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species-specific effect of UV-B radiation on the temporal pattern of leaf growth.
    Robson TM; Aphalo PJ
    Physiol Plant; 2012 Feb; 144(2):146-60. PubMed ID: 22224454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric invasion of non-native pollen in the Mediterranean region.
    Belmonte J; Vilà M
    Am J Bot; 2004 Aug; 91(8):1243-50. PubMed ID: 21653481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serious complications in experiments in which UV doses are effected by using different lamp heights.
    Flint SD; Ryel RJ; Hudelson TJ; Caldwell MM
    J Photochem Photobiol B; 2009 Oct; 97(1):48-53. PubMed ID: 19709898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and physiological responses of two varieties of a highland species (Chenopodium quinoa Willd.) growing under near-ambient and strongly reduced solar UV-B in a lowland location.
    González JA; Rosa M; Parrado MF; Hilal M; Prado FE
    J Photochem Photobiol B; 2009 Aug; 96(2):144-51. PubMed ID: 19540773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variations in UV-B tolerance and germination speed of Metarhizium anisopliae conidia produced on insects and artificial substrates.
    Rangel DE; Braga GU; Flint SD; Anderson AJ; Roberts DW
    J Invertebr Pathol; 2004; 87(2-3):77-83. PubMed ID: 15579316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.