These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21684977)

  • 21. Thermochromic VO2 thin films: solution-based processing, improved optical properties, and lowered phase transformation temperature.
    Zhang Z; Gao Y; Chen Z; Du J; Cao C; Kang L; Luo H
    Langmuir; 2010 Jul; 26(13):10738-44. PubMed ID: 20329789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of elevated atmospheric CO(2) and temperature on leaf optical properties in Acer saccharum.
    Carter GA; Bahadur R; Norby RJ
    Environ Exp Bot; 2000 Jun; 43(3):267-273. PubMed ID: 10725525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mean effective optical constants of thirteen kinds of plant leaves.
    Allen WA; Gausman HW; Richardson AJ; Wiegand CL
    Appl Opt; 1970 Nov; 9(11):2573-7. PubMed ID: 20094309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of epidermal windows on the light environment within the leaves of six succulents.
    Egbert KJ; Martin CE; Vogelmann TC
    J Exp Bot; 2008; 59(7):1863-73. PubMed ID: 18436541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leaf phenology in relation to canopy closure in southern Appalachian trees.
    Lopez OR; Farris-Lopez K; Montgomery RA; Givnish TJ
    Am J Bot; 2008 Nov; 95(11):1395-407. PubMed ID: 21628147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential performance of tropical soda apple and its biological control agent Gratiana boliviana (Coleoptera: Chrysomelidae) in open and shaded habitats.
    Diaz R; Aguirre C; Wheeler GS; Lapointe SL; Rosskopf E; Overholt WA
    Environ Entomol; 2011 Dec; 40(6):1437-47. PubMed ID: 22217759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding.
    Mielke MS; Schaffer B
    Tree Physiol; 2010 Jan; 30(1):45-55. PubMed ID: 19923194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Construction costs, chemical composition and payback time of high- and low-irradiance leaves.
    Poorter H; Pepin S; Rijkers T; de Jong Y; Evans JR; Körner C
    J Exp Bot; 2006; 57(2):355-71. PubMed ID: 16303828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. What makes a leaf tough? Patterns of correlated evolution between leaf toughness traits and demographic rates among 197 shade-tolerant woody species in a neotropical forest.
    Westbrook JW; Kitajima K; Burleigh JG; Kress WJ; Erickson DL; Wright SJ
    Am Nat; 2011 Jun; 177(6):800-11. PubMed ID: 21597256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation.
    Niinemets U; Wright IJ; Evans JR
    J Exp Bot; 2009; 60(8):2433-49. PubMed ID: 19255061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silicified structures affect leaf optical properties in grasses and sedge.
    Klančnik K; Vogel-Mikuš K; Gaberščik A
    J Photochem Photobiol B; 2014 Jan; 130():1-10. PubMed ID: 24231391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sclerophylly in two contrasting tropical environments: low nutrients vs. low rainfall.
    Read J; Sanson GD; Garine-Wichatitsky Md; Jaffré T
    Am J Bot; 2006 Nov; 93(11):1601-14. PubMed ID: 21642105
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variation in performance of the tree fern Cyathea caracasana (Cyatheaceae) across a successional mosaic in an Andean cloud forest.
    Crystal Arens N
    Am J Bot; 2001 Mar; 88(3):545-51. PubMed ID: 11250831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical properties of intact leaves for estimating chlorophyll concentration.
    Carter GA; Spiering BA
    J Environ Qual; 2002; 31(5):1424-32. PubMed ID: 12371158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light scattering in stacked mesophyll cells results in similarity characteristic of solar spectral reflectance and transmittance of natural leaves.
    Xu K; Ye H
    Sci Rep; 2023 Mar; 13(1):4694. PubMed ID: 36949090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimating near-infrared leaf reflectance from leaf structural characteristics.
    Slaton MR; Raymond Hunt E; Smith WK
    Am J Bot; 2001 Feb; 88(2):278-84. PubMed ID: 11222250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterogeneous reflected light influences asymmetry in leaf anatomy and gas exchange.
    Greaver TL; Herbert TJ
    Am J Bot; 2004 Dec; 91(12):1998-2003. PubMed ID: 21652348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relation of light reflectance to histological and physical evaluations of cotton leaf maturity.
    Gausman HW; Allen WA; Cardenas R; Richardson AJ
    Appl Opt; 1970 Mar; 9(3):545-52. PubMed ID: 20076241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frond Optical Properties of the Fern
    Grašič M; Sovdat T; Gaberščik A
    Plants (Basel); 2020 Sep; 9(10):. PubMed ID: 32977666
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leaf longevity of Oxalis acetosella (Oxalidaceae) in the Catskill Mountains, New York, USA.
    Tessier JT
    Am J Bot; 2004 Sep; 91(9):1371-7. PubMed ID: 21652370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.