These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21684990)

  • 1. Evolution of novel morphological and reproductive traits in a clade containing Antirrhinum majus (Scrophulariaceae).
    Reeves P; Olmstead R
    Am J Bot; 1998 Aug; 85(8):1047. PubMed ID: 21684990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Floral zygomorphy, the recurring evolution of a successful trait.
    Cubas P
    Bioessays; 2004 Nov; 26(11):1175-84. PubMed ID: 15499590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome.
    Preston JC; Martinez CC; Hileman LC
    Proc Natl Acad Sci U S A; 2011 Feb; 108(6):2343-8. PubMed ID: 21282634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary developmental genetics of floral symmetry: the revealing power of Linnaeus' monstrous flower.
    Theissen G
    Bioessays; 2000 Mar; 22(3):209-13. PubMed ID: 10684579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential regulation of symmetry genes and the evolution of floral morphologies.
    Hileman LC; Kramer EM; Baum DA
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12814-9. PubMed ID: 14555758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the TCP gene family in Asteridae: cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution.
    Reeves PA; Olmstead RG
    Mol Biol Evol; 2003 Dec; 20(12):1997-2009. PubMed ID: 12885953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental genetics of floral symmetry evolution.
    Preston JC; Hileman LC
    Trends Plant Sci; 2009 Mar; 14(3):147-54. PubMed ID: 19231272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flower development in pisum sativum: from the war of the whorls to the battle of the common primordia.
    Ferrandiz C; Navarro C; Gomez MD; Canas LA; Beltran JP
    Dev Genet; 1999 Sep; 25(3):280-90. PubMed ID: 10528268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular evolution of cycloidea-like genes in Fabaceae.
    Fukuda T; Yokoyama J; Maki M
    J Mol Evol; 2003 Nov; 57(5):588-97. PubMed ID: 14738317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Duplications and expression of DIVARICATA-like genes in dipsacales.
    Howarth DG; Donoghue MJ
    Mol Biol Evol; 2009 Jun; 26(6):1245-58. PubMed ID: 19289599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic relationships of North American Antirrhinum (Veronicaceae).
    Oyama RK; Baum DA
    Am J Bot; 2004 Jun; 91(6):918-25. PubMed ID: 21653448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis.
    Benedito VA; Visser PB; van Tuyl JM; Angenent GC; de Vries SC; Krens FA
    J Exp Bot; 2004 Jun; 55(401):1391-9. PubMed ID: 15155783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of staminodes in angiosperms: patterns of stamen reduction, loss, and functional re-invention.
    Walker-Larsen J; Harder LD
    Am J Bot; 2000 Oct; 87(10):1367-84. PubMed ID: 11034915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity.
    Cartolano M; Castillo R; Efremova N; Kuckenberg M; Zethof J; Gerats T; Schwarz-Sommer Z; Vandenbussche M
    Nat Genet; 2007 Jul; 39(7):901-5. PubMed ID: 17589508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum.
    Masiero S; Li MA; Will I; Hartmann U; Saedler H; Huijser P; Schwarz-Sommer Z; Sommer H
    Development; 2004 Dec; 131(23):5981-90. PubMed ID: 15539492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bird-pollinated flowers in an evolutionary and molecular context.
    Cronk Q; Ojeda I
    J Exp Bot; 2008; 59(4):715-27. PubMed ID: 18326865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes.
    Becker A; Kaufmann K; Freialdenhoven A; Vincent C; Li MA; Saedler H; Theissen G
    Mol Genet Genomics; 2002 Feb; 266(6):942-50. PubMed ID: 11862488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution and diversification of the CYC/TB1 gene family in Asteraceae--a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae).
    Tähtiharju S; Rijpkema AS; Vetterli A; Albert VA; Teeri TH; Elomaa P
    Mol Biol Evol; 2012 Apr; 29(4):1155-66. PubMed ID: 22101417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural selection on Erysimum mediohispanicum flower shape: insights into the evolution of zygomorphy.
    Gómez JM; Perfectti F; Camacho JP
    Am Nat; 2006 Oct; 168(4):531-45. PubMed ID: 17004224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ROSINA (RSI), a novel protein with DNA-binding capacity, acts during floral organ development in Antirrhinum majus.
    Roccaro M; Li Y; Masiero S; Saedler H; Sommer H
    Plant J; 2005 Jul; 43(2):238-50. PubMed ID: 15998310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.