BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 21685012)

  • 1. Variation in allozymes and stomatal size in pinyon (Pinus edulis, Pinaceae), associated with soil moisture.
    Mitton JB; Grant MC; Yoshino AM
    Am J Bot; 1998 Sep; 85(9):1262-5. PubMed ID: 21685012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic variation in piñon pine, Pinus edulis, associated with summer precipitation.
    Mitton JB; Duran KL
    Mol Ecol; 2004 May; 13(5):1259-64. PubMed ID: 15078461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation.
    Aspinwall MJ; King JS; McKeand SE; Domec JC
    Tree Physiol; 2011 Jan; 31(1):78-91. PubMed ID: 21389004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pinyon rhizosphere, plant stress, and herbivory affect the abundance of microbial decomposers in soils.
    Kuske CR; Ticknor LO; Busch JD; Gehring CA; Whitham TG
    Microb Ecol; 2003 May; 45(4):340-52. PubMed ID: 12704562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seed-caching responses to substrate and rock cover by two Peromyscus species: implications for pinyon pine establishment.
    Pearson KM; Theimer TC
    Oecologia; 2004 Sep; 141(1):76-83. PubMed ID: 15258848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.
    Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A
    Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity.
    Andrews SF; Flanagan LB; Sharp EJ; Cai T
    Tree Physiol; 2012 Feb; 32(2):146-60. PubMed ID: 22318220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased moth herbivory associated with environmental stress of pinyon pine at local and regional levels.
    Cobb NS; Mopper S; Gehring CA; Caouette M; Christensen KM; Whitham TG
    Oecologia; 1997 Feb; 109(3):389-397. PubMed ID: 28307536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic variation at allozyme and RAPD markers in Pinus longaeva (Pinaceae) of the White Mountains, California.
    Lee SW; Ledig FT; Johnson DR
    Am J Bot; 2002 Apr; 89(4):566-77. PubMed ID: 21665657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water availability and genetic effects on water relations of loblolly pine (Pinus taeda) stands.
    Gonzalez-Benecke CA; Martin TA
    Tree Physiol; 2010 Mar; 30(3):376-92. PubMed ID: 20071360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model.
    Zweifel R; Steppe K; Sterck FJ
    J Exp Bot; 2007; 58(8):2113-31. PubMed ID: 17490998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GENETIC DIFFERENTIATION AND HETEROZYGOSITY IN PINYON PINE ASSOCIATED WITH RESISTANCE TO HERBIVORY AND ENVIRONMENTAL STRESS.
    Mopper S; Mitton JB; Whitham TG; Cobb NS; Christensen KM
    Evolution; 1991 Jun; 45(4):989-999. PubMed ID: 28564059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting pattern of methanotrophs in dry tropical forest soils: effect of soil nitrogen, carbon and moisture.
    Singh JS; Kashyap AK
    Microbiol Res; 2007; 162(3):276-83. PubMed ID: 16875809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil photolysis in a moisture- and temperature-controlled environment. 2. Insecticides.
    Graebing P; Chib JS
    J Agric Food Chem; 2004 May; 52(9):2606-14. PubMed ID: 15113166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speciation by host-switching in pinyon Cinara (Insecta: Hemiptera: Aphididae).
    Favret C; Voegtlin DJ
    Mol Phylogenet Evol; 2004 Jul; 32(1):139-51. PubMed ID: 15186803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon gain and water use in pinyon pine-juniper woodlands of northern New Mexico: field versus phytotron chamber measurements.
    Lajtha K; Barnes FJ
    Tree Physiol; 1991; 9(1_2):59-67. PubMed ID: 14972856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial pattern of allozyme variation in a contact zone of Pinus Ponderosa and P. arizonica (Pinaceae).
    Epperson BK; Chung MG; Telewski FW
    Am J Bot; 2003 Jan; 90(1):25-31. PubMed ID: 21659077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Physical factors influencing the floristic relationships of pinyon pine (Pinaceae) from San Luis Potosi, Mexico].
    Romero A; Luna M; García E
    Rev Biol Trop; 2014 Jun; 62(2):795-808. PubMed ID: 25102659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological variation of Pinus flexilis (Pinaceae), a bird-dispersed pine, across a range of elevations.
    Schoettle AW; Rochelle SG
    Am J Bot; 2000 Dec; 87(12):1797-806. PubMed ID: 11118417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Genetic variation and differentiation of peat-bog and dry-meadow populations of the dwarf mountain pine Pinus mugo Turra in the highlands of the Ukrainian Carpathians].
    Korshikov II; Pirko IaV
    Genetika; 2002 Sep; 38(9):1235-41. PubMed ID: 12391884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.