These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21685072)

  • 1. Optimally discriminative subnetwork markers predict response to chemotherapy.
    Dao P; Wang K; Collins C; Ester M; Lapuk A; Sahinalp SC
    Bioinformatics; 2011 Jul; 27(13):i205-13. PubMed ID: 21685072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of diagnostic subnetwork markers for cancer in human protein-protein interaction network.
    Su J; Yoon BJ; Dougherty ER
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S8. PubMed ID: 20946619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous identification of robust synergistic subnetwork markers for effective cancer prognosis.
    Khunlertgit N; Yoon BJ
    EURASIP J Bioinform Syst Biol; 2014 Dec; 2014():19. PubMed ID: 28194169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
    Doungpan N; Engchuan W; Chan JH; Meechai A
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):70. PubMed ID: 28117655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust and efficient identification of biomarkers by classifying features on graphs.
    Hwang T; Sicotte H; Tian Z; Wu B; Kocher JP; Wigle DA; Kumar V; Kuang R
    Bioinformatics; 2008 Sep; 24(18):2023-9. PubMed ID: 18653521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring cancer subnetwork markers using density-constrained biclustering.
    Dao P; Colak R; Salari R; Moser F; Davicioni E; Schönhuth A; Ester M
    Bioinformatics; 2010 Sep; 26(18):i625-31. PubMed ID: 20823331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GTA: a game theoretic approach to identifying cancer subnetwork markers.
    Farahmand S; Goliaei S; Ansari-Pour N; Razaghi-Moghadam Z
    Mol Biosyst; 2016 Mar; 12(3):818-25. PubMed ID: 26750920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CytoGTA: A cytoscape plugin for identifying discriminative subnetwork markers using a game theoretic approach.
    Farahmand S; Foroughmand-Araabi MH; Goliaei S; Razaghi-Moghadam Z
    PLoS One; 2017; 12(10):e0185016. PubMed ID: 28968407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of breast cancer candidate genes using gene co-expression and protein-protein interaction information.
    Yue Z; Li HT; Yang Y; Hussain S; Zheng CH; Xia J; Chen Y
    Oncotarget; 2016 Jun; 7(24):36092-36100. PubMed ID: 27150055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying protein interaction subnetworks by a bagging Markov random field-based method.
    Chen L; Xuan J; Riggins RB; Wang Y; Clarke R
    Nucleic Acids Res; 2013 Jan; 41(2):e42. PubMed ID: 23161673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of hub subnetwork based on topological features of genes in breast cancer.
    Zhuang DY; Jiang L; He QQ; Zhou P; Yue T
    Int J Mol Med; 2015 Mar; 35(3):664-74. PubMed ID: 25573623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Network-Based Methodology to Identify Subnetwork Markers for Diagnosis and Prognosis of Colorectal Cancer.
    Al-Harazi O; Kaya IH; El Allali A; Colak D
    Front Genet; 2021; 12():721949. PubMed ID: 34790220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ensemble predictive modeling framework for breast cancer classification.
    Nagarajan R; Upreti M
    Methods; 2017 Dec; 131():128-134. PubMed ID: 28716511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-treatment biomarkers can improve prediction of response to neoadjuvant chemotherapy in breast cancer.
    Bownes RJ; Turnbull AK; Martinez-Perez C; Cameron DA; Sims AH; Oikonomidou O
    Breast Cancer Res; 2019 Jun; 21(1):73. PubMed ID: 31200764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting a few functionally reproducible biomarkers to build robust subnetwork-based classifiers for the diagnosis of cancer.
    Zhang L; Li S; Hao C; Hong G; Zou J; Zhang Y; Li P; Guo Z
    Gene; 2013 Sep; 526(2):232-8. PubMed ID: 23707927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying cancer biomarkers by network-constrained support vector machines.
    Chen L; Xuan J; Riggins RB; Clarke R; Wang Y
    BMC Syst Biol; 2011 Oct; 5():161. PubMed ID: 21992556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression profiles of breast cancer obtained from core cut biopsies before neoadjuvant docetaxel, adriamycin, and cyclophoshamide chemotherapy correlate with routine prognostic markers and could be used to identify predictive signatures.
    Rody A; Karn T; Gätje R; Kourtis K; Minckwitz G; Loibl S; Munnes M; Ruckhäberle E; Holtrich U; Kaufmann M; Ahr A
    Zentralbl Gynakol; 2006 Apr; 128(2):76-81. PubMed ID: 16673249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.