These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21685079)

  • 1. Mapping ancestral genomes with massive gene loss: a matrix sandwich problem.
    Gavranović H; Chauve C; Salse J; Tannier E
    Bioinformatics; 2011 Jul; 27(13):i257-65. PubMed ID: 21685079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of gene neighborhoods within reconciled phylogenies.
    Bérard S; Gallien C; Boussau B; Szöllősi GJ; Daubin V; Tannier E
    Bioinformatics; 2012 Sep; 28(18):i382-i388. PubMed ID: 22962456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ancestral Flowering Plant Chromosomes and Gene Orders Based on Generalized Adjacencies and Chromosomal Gene Co-Occurrences.
    Xu Q; Jin L; Zhang Y; Zhang X; Zheng C; Leebens-Mack JH; Sankoff D
    J Comput Biol; 2021 Nov; 28(11):1156-1179. PubMed ID: 34783601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ancestral gene synteny reconstruction improves extant species scaffolding.
    Anselmetti Y; Berry V; Chauve C; Chateau A; Tannier E; Bérard S
    BMC Genomics; 2015; 16 Suppl 10(Suppl 10):S11. PubMed ID: 26450761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing ancestral gene orders with duplications guided by synteny level genome reconstruction.
    Rajaraman A; Ma J
    BMC Bioinformatics; 2016 Nov; 17(Suppl 14):414. PubMed ID: 28185565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genomes.
    Chauve C; Tannier E
    PLoS Comput Biol; 2008 Nov; 4(11):e1000234. PubMed ID: 19043541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of ancestral genome reveals chromosome evolution history for selected legume species.
    Ren L; Huang W; Cannon SB
    New Phytol; 2019 Sep; 223(4):2090-2103. PubMed ID: 30834536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructing the architecture of the ancestral amniote genome.
    Ouangraoua A; Tannier E; Chauve C
    Bioinformatics; 2011 Oct; 27(19):2664-71. PubMed ID: 21846735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of local genome rearrangement improves resolution of ancestral genomic maps in plants.
    Rubert DP; Martinez FV; Stoye J; Doerr D
    BMC Genomics; 2020 Apr; 21(Suppl 2):273. PubMed ID: 32299356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast ancestral gene order reconstruction of genomes with unequal gene content.
    Feijão P; Araujo E
    BMC Bioinformatics; 2016 Nov; 17(Suppl 14):413. PubMed ID: 28185578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified ILP framework for core ancestral genome reconstruction problems.
    Avdeyev P; Alexeev N; Rong Y; Alekseyev MA
    Bioinformatics; 2020 May; 36(10):2993-3003. PubMed ID: 32058559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of ancestral gene orders using intermediate genomes.
    Feijão P
    BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S3. PubMed ID: 26451811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome evolution at the origin of the ancestral vertebrate genome.
    Sacerdot C; Louis A; Bon C; Berthelot C; Roest Crollius H
    Genome Biol; 2018 Oct; 19(1):166. PubMed ID: 30333059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eleven ancestral gene families lost in mammals and vertebrates while otherwise universally conserved in animals.
    Danchin EG; Gouret P; Pontarotti P
    BMC Evol Biol; 2006 Jan; 6():5. PubMed ID: 16420703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of ancestral proto-Actinopterygian chromosome arms within the genomes of 4R-derivative salmonid fishes (Rainbow trout and Atlantic salmon).
    Danzmann RG; Davidson EA; Ferguson MM; Gharbi K; Koop BF; Hoyheim B; Lien S; Lubieniecki KP; Moghadam HK; Park J; Phillips RB; Davidson WS
    BMC Genomics; 2008 Nov; 9():557. PubMed ID: 19032764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DUPCAR: reconstructing contiguous ancestral regions with duplications.
    Ma J; Ratan A; Raney BJ; Suh BB; Zhang L; Miller W; Haussler D
    J Comput Biol; 2008 Oct; 15(8):1007-27. PubMed ID: 18774902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of Ancestral Genomes in Presence of Gene Gain and Loss.
    Avdeyev P; Jiang S; Aganezov S; Hu F; Alekseyev MA
    J Comput Biol; 2016 Mar; 23(3):150-64. PubMed ID: 26885568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae.
    Pellicer J; Kelly LJ; Leitch IJ; Zomlefer WB; Fay MF
    New Phytol; 2014 Mar; 201(4):1484-1497. PubMed ID: 24299166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ancestral polyploidy in seed plants and angiosperms.
    Jiao Y; Wickett NJ; Ayyampalayam S; Chanderbali AS; Landherr L; Ralph PE; Tomsho LP; Hu Y; Liang H; Soltis PS; Soltis DE; Clifton SW; Schlarbaum SE; Schuster SC; Ma H; Leebens-Mack J; dePamphilis CW
    Nature; 2011 May; 473(7345):97-100. PubMed ID: 21478875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring ancestral gene order.
    Catchen JM; Conery JS; Postlethwait JH
    Methods Mol Biol; 2008; 452():365-83. PubMed ID: 18566773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.