BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21685096)

  • 1. Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling.
    Łabaj PP; Leparc GG; Linggi BE; Markillie LM; Wiley HS; Kreil DP
    Bioinformatics; 2011 Jul; 27(13):i383-91. PubMed ID: 21685096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples.
    Behr J; Kahles A; Zhong Y; Sreedharan VT; Drewe P; Rätsch G
    Bioinformatics; 2013 Oct; 29(20):2529-38. PubMed ID: 23980025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods.
    Quinn TP; Crowley TM; Richardson MF
    BMC Bioinformatics; 2018 Jul; 19(1):274. PubMed ID: 30021534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DAFS: a data-adaptive flag method for RNA-sequencing data to differentiate genes with low and high expression.
    George NI; Chang CW
    BMC Bioinformatics; 2014 Mar; 15():92. PubMed ID: 24685233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The eSNV-detect: a computational system to identify expressed single nucleotide variants from transcriptome sequencing data.
    Tang X; Baheti S; Shameer K; Thompson KJ; Wills Q; Niu N; Holcomb IN; Boutet SC; Ramakrishnan R; Kachergus JM; Kocher JP; Weinshilboum RM; Wang L; Thompson EA; Kalari KR
    Nucleic Acids Res; 2014 Dec; 42(22):e172. PubMed ID: 25352556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted RNA sequencing enhances gene expression profiling of ultra-low input samples.
    Curion F; Handel AE; Attar M; Gallone G; Bowden R; Cader MZ; Clark MB
    RNA Biol; 2020 Dec; 17(12):1741-1753. PubMed ID: 32597303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data.
    Rapaport F; Khanin R; Liang Y; Pirun M; Krek A; Zumbo P; Mason CE; Socci ND; Betel D
    Genome Biol; 2013; 14(9):R95. PubMed ID: 24020486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salmon provides fast and bias-aware quantification of transcript expression.
    Patro R; Duggal G; Love MI; Irizarry RA; Kingsford C
    Nat Methods; 2017 Apr; 14(4):417-419. PubMed ID: 28263959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tools and best practices for data processing in allelic expression analysis.
    Castel SE; Levy-Moonshine A; Mohammadi P; Banks E; Lappalainen T
    Genome Biol; 2015 Sep; 16(1):195. PubMed ID: 26381377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. betAS: intuitive analysis and visualization of differential alternative splicing using beta distributions.
    Ascensão-Ferreira M; Martins-Silva R; Saraiva-Agostinho N; Barbosa-Morais NL
    RNA; 2024 Mar; 30(4):337-353. PubMed ID: 38278530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-seq: technical variability and sampling.
    McIntyre LM; Lopiano KK; Morse AM; Amin V; Oberg AL; Young LJ; Nuzhdin SV
    BMC Genomics; 2011 Jun; 12():293. PubMed ID: 21645359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential transcript usage analysis incorporating quantification uncertainty via compositional measurement error regression modeling.
    Young AM; Van Buren S; Rashid NU
    Biostatistics; 2024 Apr; 25(2):559-576. PubMed ID: 37040757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of transcriptional noise on estimates of gene and transcript expression in RNA sequencing experiments.
    Varabyou A; Salzberg SL; Pertea M
    Genome Res; 2021 Feb; 31(2):301-308. PubMed ID: 33361112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the coverage and depth of transcriptome by RNA-Seq in chickens.
    Wang Y; Ghaffari N; Johnson CD; Braga-Neto UM; Wang H; Chen R; Zhou H
    BMC Bioinformatics; 2011 Oct; 12 Suppl 10(Suppl 10):S5. PubMed ID: 22165852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic spike-in standards for RNA-seq experiments.
    Jiang L; Schlesinger F; Davis CA; Zhang Y; Li R; Salit M; Gingeras TR; Oliver B
    Genome Res; 2011 Sep; 21(9):1543-51. PubMed ID: 21816910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3' RNA-seq is superior to standard RNA-seq in cases of sparse data but inferior at identifying toxicity pathways in a model organism.
    McClure RS; Rericha Y; Waters KM; Tanguay RL
    Front Bioinform; 2023; 3():1234218. PubMed ID: 37576716
    [No Abstract]   [Full Text] [Related]  

  • 17. Transcriptomics for Clinical and Experimental Biology Research: Hang on a Seq.
    Stokes T; Cen HH; Kapranov P; Gallagher IJ; Pitsillides AA; Volmar CH; Kraus WE; Johnson JD; Phillips SM; Wahlestedt C; Timmons JA
    Adv Genet (Hoboken); 2023 Jun; 4(2):2200024. PubMed ID: 37288167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and cleaning RNA-seq data significantly improve detection of differentially expressed genes.
    Deyneko IV; Mustafaev ON; Tyurin AА; Zhukova KV; Varzari A; Goldenkova-Pavlova IV
    BMC Bioinformatics; 2022 Nov; 23(1):488. PubMed ID: 36384457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chronic intermittent ethanol vapor exposure on RNA content of brain-derived extracellular vesicles.
    Baratta AM; Mangieri RA; Aziz HC; Lopez MF; Farris SP; Homanics GE
    Alcohol; 2022 Dec; 105():9-24. PubMed ID: 36055466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust normalization and transformation techniques for constructing gene coexpression networks from RNA-seq data.
    Johnson KA; Krishnan A
    Genome Biol; 2022 Jan; 23(1):1. PubMed ID: 34980209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.