These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21685129)

  • 41. Analysis of microRNA-target interactions by a target structure based hybridization model.
    Long D; Chan CY; Ding Y
    Pac Symp Biocomput; 2008; ():64-74. PubMed ID: 18232104
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intronic miR-932 targets the coding region of its host gene, Drosophila neuroligin2.
    Qian J; Tu R; Yuan L; Xie W
    Exp Cell Res; 2016 Jun; 344(2):183-93. PubMed ID: 26844630
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system.
    Galgano A; Forrer M; Jaskiewicz L; Kanitz A; Zavolan M; Gerber AP
    PLoS One; 2008 Sep; 3(9):e3164. PubMed ID: 18776931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer.
    Müller S; Raulefs S; Bruns P; Afonso-Grunz F; Plötner A; Thermann R; Jäger C; Schlitter AM; Kong B; Regel I; Roth WK; Rotter B; Hoffmeier K; Kahl G; Koch I; Theis FJ; Kleeff J; Winter P; Michalski CW
    Mol Cancer; 2015 Apr; 14():94. PubMed ID: 25910082
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of a dual-luciferase reporter system for in vivo visualization of MicroRNA biogenesis and posttranscriptional regulation.
    Lee JY; Kim S; Hwang DW; Jeong JM; Chung JK; Lee MC; Lee DS
    J Nucl Med; 2008 Feb; 49(2):285-94. PubMed ID: 18199619
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Zcchc11-dependent uridylation of microRNA directs cytokine expression.
    Jones MR; Quinton LJ; Blahna MT; Neilson JR; Fu S; Ivanov AR; Wolf DA; Mizgerd JP
    Nat Cell Biol; 2009 Sep; 11(9):1157-63. PubMed ID: 19701194
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Viral microRNA target allows insight into the role of translation in governing microRNA target accessibility.
    Lin HR; Ganem D
    Proc Natl Acad Sci U S A; 2011 Mar; 108(13):5148-53. PubMed ID: 21402938
    [TBL] [Abstract][Full Text] [Related]  

  • 48. IsomiRs: Expanding the miRNA repression toolbox beyond the seed.
    Bofill-De Ros X; Yang A; Gu S
    Biochim Biophys Acta Gene Regul Mech; 2020 Apr; 1863(4):194373. PubMed ID: 30953728
    [TBL] [Abstract][Full Text] [Related]  

  • 49. miR-503 represses CUG-binding protein 1 translation by recruiting CUGBP1 mRNA to processing bodies.
    Cui YH; Xiao L; Rao JN; Zou T; Liu L; Chen Y; Turner DJ; Gorospe M; Wang JY
    Mol Biol Cell; 2012 Jan; 23(1):151-62. PubMed ID: 22072795
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MicroRNA targeting specificity in mammals: determinants beyond seed pairing.
    Grimson A; Farh KK; Johnston WK; Garrett-Engele P; Lim LP; Bartel DP
    Mol Cell; 2007 Jul; 27(1):91-105. PubMed ID: 17612493
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Target identification of microRNAs expressed highly in human embryonic stem cells.
    Li SS; Yu SL; Kao LP; Tsai ZY; Singh S; Chen BZ; Ho BC; Liu YH; Yang PC
    J Cell Biochem; 2009 Apr; 106(6):1020-30. PubMed ID: 19229866
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Knockout of miR-221 and miR-222 reveals common and specific targets for paralogous miRNAs.
    Jeong G; Lim YH; Kim NJ; Wee G; Kim YK
    RNA Biol; 2017 Feb; 14(2):197-205. PubMed ID: 27981894
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human MicroRNA targets.
    John B; Enright AJ; Aravin A; Tuschl T; Sander C; Marks DS
    PLoS Biol; 2004 Nov; 2(11):e363. PubMed ID: 15502875
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes.
    Atambayeva S; Niyazova R; Ivashchenko A; Pyrkova A; Pinsky I; Akimniyazova A; Labeit S
    BMC Genomics; 2017 Jun; 18(1):428. PubMed ID: 28569192
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Known and novel post-transcriptional regulatory sequences are conserved across plant families.
    Vaughn JN; Ellingson SR; Mignone F; Arnim Av
    RNA; 2012 Mar; 18(3):368-84. PubMed ID: 22237150
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Human miRNA precursors with box H/ACA snoRNA features.
    Scott MS; Avolio F; Ono M; Lamond AI; Barton GJ
    PLoS Comput Biol; 2009 Sep; 5(9):e1000507. PubMed ID: 19763159
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification and characteristics of microRNAs from Bombyx mori.
    He PA; Nie Z; Chen J; Chen J; Lv Z; Sheng Q; Zhou S; Gao X; Kong L; Wu X; Jin Y; Zhang Y
    BMC Genomics; 2008 May; 9():248. PubMed ID: 18507836
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3'-UTR SIRF: a database for identifying clusters of whort interspersed repeats in 3' untranslated regions.
    Andken BB; Lim I; Benson G; Vincent JJ; Ferenc MT; Heinrich B; Jarzylo LA; Man HY; Deshler JO
    BMC Bioinformatics; 2007 Jul; 8():274. PubMed ID: 17663765
    [TBL] [Abstract][Full Text] [Related]  

  • 59. MicroRNAs in human cancer.
    Farazi TA; Hoell JI; Morozov P; Tuschl T
    Adv Exp Med Biol; 2013; 774():1-20. PubMed ID: 23377965
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Endogenous miRNA in the green alga Chlamydomonas regulates gene expression through CDS-targeting.
    Chung BY; Deery MJ; Groen AJ; Howard J; Baulcombe DC
    Nat Plants; 2017 Oct; 3(10):787-794. PubMed ID: 28970560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.