BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1141 related articles for article (PubMed ID: 21685366)

  • 1. Analysis of protein dynamics at active, stalled, and collapsed replication forks.
    Sirbu BM; Couch FB; Feigerle JT; Bhaskara S; Hiebert SW; Cortez D
    Genes Dev; 2011 Jun; 25(12):1320-7. PubMed ID: 21685366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone acetyltransferase 1 is required for DNA replication fork function and stability.
    Agudelo Garcia PA; Lovejoy CM; Nagarajan P; Park D; Popova LV; Freitas MA; Parthun MR
    J Biol Chem; 2020 Jun; 295(25):8363-8373. PubMed ID: 32366460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Cell Analysis of Histone Acetylation Dynamics at Replication Forks Using PLA and SIRF.
    Lee SY; Kim JJ; Miller KM
    Methods Mol Biol; 2023; 2589():345-360. PubMed ID: 36255636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25773776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin assembly controls replication fork stability.
    Clemente-Ruiz M; Prado F
    EMBO Rep; 2009 Jul; 10(7):790-6. PubMed ID: 19465889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification of proteins on newly synthesized DNA using iPOND.
    Dungrawala H; Cortez D
    Methods Mol Biol; 2015; 1228():123-31. PubMed ID: 25311126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Replication Checkpoint Prevents Two Types of Fork Collapse without Regulating Replisome Stability.
    Dungrawala H; Rose KL; Bhat KP; Mohni KN; Glick GG; Couch FB; Cortez D
    Mol Cell; 2015 Sep; 59(6):998-1010. PubMed ID: 26365379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of proteins at active, stalled, and collapsed replication forks using isolation of proteins on nascent DNA (iPOND) coupled with mass spectrometry.
    Sirbu BM; McDonald WH; Dungrawala H; Badu-Nkansah A; Kavanaugh GM; Chen Y; Tabb DL; Cortez D
    J Biol Chem; 2013 Nov; 288(44):31458-67. PubMed ID: 24047897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart.
    Somyajit K; Saxena S; Babu S; Mishra A; Nagaraju G
    Nucleic Acids Res; 2015 Nov; 43(20):9835-55. PubMed ID: 26354865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replication fork stalling elicits chromatin compaction for the stability of stalling replication forks.
    Feng G; Yuan Y; Li Z; Wang L; Zhang B; Luo J; Ji J; Kong D
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14563-14572. PubMed ID: 31262821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cohesin dynamic association to chromatin and interfacing with replication forks in genome integrity maintenance.
    Villa-Hernández S; Bermejo R
    Curr Genet; 2018 Oct; 64(5):1005-1013. PubMed ID: 29549581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.
    Wu Y; Lee SH; Williamson EA; Reinert BL; Cho JH; Xia F; Jaiswal AS; Srinivasan G; Patel B; Brantley A; Zhou D; Shao L; Pathak R; Hauer-Jensen M; Singh S; Kong K; Wu X; Kim HS; Beissbarth T; Gaedcke J; Burma S; Nickoloff JA; Hromas RA
    PLoS Genet; 2015 Dec; 11(12):e1005675. PubMed ID: 26684013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks.
    Hashimoto Y; Puddu F; Costanzo V
    Nat Struct Mol Biol; 2011 Dec; 19(1):17-24. PubMed ID: 22139015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preventing replication fork collapse to maintain genome integrity.
    Cortez D
    DNA Repair (Amst); 2015 Aug; 32():149-157. PubMed ID: 25957489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of Proteins on Nascent DNA in Hypoxia and Reoxygenation Conditions.
    Olcina MM; Giaccia AJ; Hammond EM
    Adv Exp Med Biol; 2016; 899():27-40. PubMed ID: 27325260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DCAF14 promotes stalled fork stability to maintain genome integrity.
    Townsend A; Lora G; Engel J; Tirado-Class N; Dungrawala H
    Cell Rep; 2021 Jan; 34(4):108669. PubMed ID: 33503431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA.
    Sirbu BM; Couch FB; Cortez D
    Nat Protoc; 2012 Mar; 7(3):594-605. PubMed ID: 22383038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATM and the Mre11-Rad50-Nbs1 complex respond to nucleoside analogue-induced stalled replication forks and contribute to drug resistance.
    Ewald B; Sampath D; Plunkett W
    Cancer Res; 2008 Oct; 68(19):7947-55. PubMed ID: 18829552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PCAF-Mediated Histone Acetylation Promotes Replication Fork Degradation by MRE11 and EXO1 in BRCA-Deficient Cells.
    Kim JJ; Lee SY; Choi JH; Woo HG; Xhemalce B; Miller KM
    Mol Cell; 2020 Oct; 80(2):327-344.e8. PubMed ID: 32966758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 58.