These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 21685384)
1. Caenorhabditis elegans evolves a new architecture for the multi-aminoacyl-tRNA synthetase complex. Havrylenko S; Legouis R; Negrutskii B; Mirande M J Biol Chem; 2011 Aug; 286(32):28476-87. PubMed ID: 21685384 [TBL] [Abstract][Full Text] [Related]
2. Methionyl-tRNA synthetase from Caenorhabditis elegans: a specific multidomain organization for convergent functional evolution. Havrylenko S; Legouis R; Negrutskii B; Mirande M Protein Sci; 2010 Dec; 19(12):2475-84. PubMed ID: 20954242 [TBL] [Abstract][Full Text] [Related]
3. Expanding the genetic code of Caenorhabditis elegans using bacterial aminoacyl-tRNA synthetase/tRNA pairs. Parrish AR; She X; Xiang Z; Coin I; Shen Z; Briggs SP; Dillin A; Wang L ACS Chem Biol; 2012 Jul; 7(7):1292-302. PubMed ID: 22554080 [TBL] [Abstract][Full Text] [Related]
4. A gene fusion event in the evolution of aminoacyl-tRNA synthetases. Berthonneau E; Mirande M FEBS Lett; 2000 Mar; 470(3):300-4. PubMed ID: 10745085 [TBL] [Abstract][Full Text] [Related]
5. Aminoacyl-tRNA synthetase complexes in evolution. Havrylenko S; Mirande M Int J Mol Sci; 2015 Mar; 16(3):6571-94. PubMed ID: 25807264 [TBL] [Abstract][Full Text] [Related]
6. A WHEP Domain Regulates the Dynamic Structure and Activity of Caenorhabditis elegans Glycyl-tRNA Synthetase. Chang CY; Chien CI; Chang CP; Lin BC; Wang CC J Biol Chem; 2016 Aug; 291(32):16567-75. PubMed ID: 27298321 [TBL] [Abstract][Full Text] [Related]
7. Seven mammalian aminoacyl-tRNA synthetases associated within the same complex are functionally independent. Mirande M; Cirakoğlu B; Waller JP Eur J Biochem; 1983 Mar; 131(1):163-70. PubMed ID: 6832139 [TBL] [Abstract][Full Text] [Related]
8. Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein. Quevillon S; Robinson JC; Berthonneau E; Siatecka M; Mirande M J Mol Biol; 1999 Jan; 285(1):183-95. PubMed ID: 9878398 [TBL] [Abstract][Full Text] [Related]
9. Assembly of the novel five-component apicomplexan multi-aminoacyl-tRNA synthetase complex is driven by the hybrid scaffold protein Tg-p43. van Rooyen JM; Murat JB; Hammoudi PM; Kieffer-Jaquinod S; Coute Y; Sharma A; Pelloux H; Belrhali H; Hakimi MA PLoS One; 2014; 9(2):e89487. PubMed ID: 24586818 [TBL] [Abstract][Full Text] [Related]
10. Survival from hypoxia in C. elegans by inactivation of aminoacyl-tRNA synthetases. Anderson LL; Mao X; Scott BA; Crowder CM Science; 2009 Jan; 323(5914):630-3. PubMed ID: 19179530 [TBL] [Abstract][Full Text] [Related]
11. Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex. Kim T; Park SG; Kim JE; Seol W; Ko YG; Kim S J Biol Chem; 2000 Jul; 275(28):21768-72. PubMed ID: 10801842 [TBL] [Abstract][Full Text] [Related]
12. Interactions of aminoacyl-tRNA synthetases in high-molecular-weight multienzyme complexes from rat liver. Dang CV; Ferguson B; Burke DJ; Garcia V; Yang DC Biochim Biophys Acta; 1985 Jul; 829(3):319-26. PubMed ID: 4005265 [TBL] [Abstract][Full Text] [Related]
13. Evolution of the multi-tRNA synthetase complex and its role in cancer. Hyeon DY; Kim JH; Ahn TJ; Cho Y; Hwang D; Kim S J Biol Chem; 2019 Apr; 294(14):5340-5351. PubMed ID: 30782841 [TBL] [Abstract][Full Text] [Related]
14. Dissection of the structural organization of the aminoacyl-tRNA synthetase complex. Kaminska M; Havrylenko S; Decottignies P; Gillet S; Le Maréchal P; Negrutskii B; Mirande M J Biol Chem; 2009 Mar; 284(10):6053-60. PubMed ID: 19131329 [TBL] [Abstract][Full Text] [Related]
15. Dynamic Organization of Aminoacyl-tRNA Synthetase Complexes in the Cytoplasm of Human Cells. Kaminska M; Havrylenko S; Decottignies P; Le Maréchal P; Negrutskii B; Mirande M J Biol Chem; 2009 May; 284(20):13746-13754. PubMed ID: 19289464 [TBL] [Abstract][Full Text] [Related]
16. Citric acid cycle and the origin of MARS. Eswarappa SM; Fox PL Trends Biochem Sci; 2013 May; 38(5):222-8. PubMed ID: 23415030 [TBL] [Abstract][Full Text] [Related]
17. Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. II. Structural characterization of the polypeptide components and immunological identification of the methionyl-tRNA synthetase subunit. Mirande M; Kellermann O; Waller JP J Biol Chem; 1982 Sep; 257(18):11049-55. PubMed ID: 7107645 [TBL] [Abstract][Full Text] [Related]
18. Exploring the evolutionary diversity and assembly modes of multi-aminoacyl-tRNA synthetase complexes: lessons from unicellular organisms. Laporte D; Huot JL; Bader G; Enkler L; Senger B; Becker HD FEBS Lett; 2014 Nov; 588(23):4268-78. PubMed ID: 25315413 [TBL] [Abstract][Full Text] [Related]
19. Intron positions delineate the evolutionary path of a pervasively appended peptide in five human aminoacyl-tRNA synthetases. Shiba K J Mol Evol; 2002 Dec; 55(6):727-33. PubMed ID: 12486531 [TBL] [Abstract][Full Text] [Related]
20. Does the complex of aminoacyl-tRNA synthetases and tRNA-modifying enzymes prevent miscoding? Ryazanov AG FEBS Lett; 1984 Dec; 178(1):6-9. PubMed ID: 6500064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]