These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21685397)

  • 21. Subthalamic nucleus stimulation restores the efferent cortical drive to muscle in parallel to functional motor improvement.
    Weiss D; Breit S; Hoppe J; Hauser AK; Freudenstein D; Krüger R; Sauseng P; Govindan RB; Gerloff C
    Eur J Neurosci; 2012 Mar; 35(6):896-908. PubMed ID: 22393899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Attenuation of corticomuscular coherence with additional motor or non-motor task.
    Johnson AN; Wheaton LA; Shinohara M
    Clin Neurophysiol; 2011 Feb; 122(2):356-63. PubMed ID: 20638330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-density surface electromyography improves the identification of oscillatory synaptic inputs to motoneurons.
    Steeg Cv; Daffertshofer A; Stegeman DF; Boonstra TW
    J Appl Physiol (1985); 2014 May; 116(10):1263-71. PubMed ID: 24651985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial variability in cortex-muscle coherence investigated with magnetoencephalography and high-density surface electromyography.
    Piitulainen H; Botter A; Bourguignon M; Jousmäki V; Hari R
    J Neurophysiol; 2015 Nov; 114(5):2843-53. PubMed ID: 26354317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantifying connectivity via efferent and afferent pathways in motor control using coherence measures and joint position perturbations.
    Campfens SF; Schouten AC; van Putten MJ; van der Kooij H
    Exp Brain Res; 2013 Jul; 228(2):141-53. PubMed ID: 23665751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pattern Reorganization of Corticomuscular Connection with the Tactile Stimulation.
    Li L; Guo J; Zhang Y; Wu H; Li L; Liu T; Wang J
    Ann Biomed Eng; 2020 Feb; 48(2):834-847. PubMed ID: 31811473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contact forces evoked by transcranial magnetic stimulation of the motor cortex in a multi-finger grasp.
    Baud-Bovy G; Prattichizzo D; Rossi S
    Brain Res Bull; 2008 Apr; 75(6):723-36. PubMed ID: 18394518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional corticospinal projections from human supplementary motor area revealed by corticomuscular coherence during precise grip force control.
    Chen S; Entakli J; Bonnard M; Berton E; De Graaf JB
    PLoS One; 2013; 8(3):e60291. PubMed ID: 23555945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcranial magnetic stimulation during voluntary action: directional facilitation of outputs and relationships to force generation.
    Cros D; Soto O; Chiappa KH
    Brain Res; 2007 Dec; 1185():103-16. PubMed ID: 17961516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of carbamazepine on human corticomuscular coherence.
    Riddle CN; Baker MR; Baker SN
    Neuroimage; 2004 May; 22(1):333-40. PubMed ID: 15110023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Corticospinal control of the thumb-index grip depends on precision of force control: a transcranial magnetic stimulation and functional magnetic resonance imagery study in humans.
    Bonnard M; Galléa C; De Graaf JB; Pailhous J
    Eur J Neurosci; 2007 Feb; 25(3):872-80. PubMed ID: 17328782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional connectivity in the neuromuscular system underlying bimanual coordination.
    de Vries IE; Daffertshofer A; Stegeman DF; Boonstra TW
    J Neurophysiol; 2016 Dec; 116(6):2576-2585. PubMed ID: 27628205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prolonged reaction time during episodes of elevated β-band corticomuscular coupling and associated oscillatory muscle activity.
    Matsuya R; Ushiyama J; Ushiba J
    J Appl Physiol (1985); 2013 Apr; 114(7):896-904. PubMed ID: 23393066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phasic stabilization of motor output after auditory and visual distractors.
    Piitulainen H; Bourguignon M; Smeds E; De Tiège X; Jousmäki V; Hari R
    Hum Brain Mapp; 2015 Dec; 36(12):5168-82. PubMed ID: 26415889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manipulation of peripheral neural feedback loops alters human corticomuscular coherence.
    Riddle CN; Baker SN
    J Physiol; 2005 Jul; 566(Pt 2):625-39. PubMed ID: 15919711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscle coordination and force variability during static and dynamic tracking tasks.
    Svendsen JH; Samani A; Mayntzhusen K; Madeleine P
    Hum Mov Sci; 2011 Dec; 30(6):1039-51. PubMed ID: 21549442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observing how others lift light or heavy objects: which visual cues mediate the encoding of muscular force in the primary motor cortex?
    Alaerts K; Swinnen SP; Wenderoth N
    Neuropsychologia; 2010 Jun; 48(7):2082-90. PubMed ID: 20381505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hemispheric differences in the relationship between corticomotor excitability changes following a fine-motor task and motor learning.
    Garry MI; Kamen G; Nordstrom MA
    J Neurophysiol; 2004 Apr; 91(4):1570-8. PubMed ID: 14627660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Practice-related modulations of force enslaving and cortical activity as revealed by EEG.
    Chiang H; Slobounov SM; Ray W
    Clin Neurophysiol; 2004 May; 115(5):1033-43. PubMed ID: 15066527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of corticomuscular coherence by peripheral stimuli.
    McClelland VM; Cvetkovic Z; Mills KR
    Exp Brain Res; 2012 Jun; 219(2):275-92. PubMed ID: 22526947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.