These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 21685554)

  • 1. Wavepacket scattering of Dirac and Schrödinger particles on potential and magnetic barriers.
    Rakhimov KhY; Chaves A; Farias GA; Peeters FM
    J Phys Condens Matter; 2011 Jul; 23(27):275801. PubMed ID: 21685554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional gas of massless Dirac fermions in graphene.
    Novoselov KS; Geim AK; Morozov SV; Jiang D; Katsnelson MI; Grigorieva IV; Dubonos SV; Firsov AA
    Nature; 2005 Nov; 438(7065):197-200. PubMed ID: 16281030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversal of Klein reflection by magnetic barriers in bilayer graphene.
    Agrawal Garg N; Grover S; Ghosh S; Sharma M
    J Phys Condens Matter; 2012 May; 24(17):175003. PubMed ID: 22481035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavepacket approach to the cumulative reaction probability within the flux operator formalism.
    Garashchuk S; Vazhappilly T
    J Chem Phys; 2009 Oct; 131(16):164108. PubMed ID: 19894928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Born-Oppenheimer electronic and nuclear wavepacket dynamics.
    Yonehara T; Takahashi S; Takatsuka K
    J Chem Phys; 2009 Jun; 130(21):214113. PubMed ID: 19508062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semirelativity in semiconductors: a review.
    Zawadzki W
    J Phys Condens Matter; 2017 Sep; 29(37):373004. PubMed ID: 28608783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonadiabatic electron wavepacket dynamics of molecules in an intense optical field: an ab initio electronic state study.
    Yonehara T; Takatsuka K
    J Chem Phys; 2008 Apr; 128(15):154104. PubMed ID: 18433187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of level-spacing statistics in chaotic graphene billiards.
    Huang L; Lai YC; Grebogi C
    Chaos; 2011 Mar; 21(1):013102. PubMed ID: 21456816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zitterbewegung of electrons in quantum wells and dots in the presence of an in-plane magnetic field.
    Biswas T; Ghosh TK
    J Phys Condens Matter; 2012 May; 24(18):185304. PubMed ID: 22481374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum coherence in the reflection of above barrier wavepackets.
    Petersen J; Pollak E
    J Chem Phys; 2018 Feb; 148(7):074111. PubMed ID: 29471663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing wavepacket dynamics with femtosecond energy- and angle-resolved photoelectron spectroscopy.
    Takatsuka K; Arasaki Y; Wang K; McKoy V
    Faraday Discuss; 2000; (115):1-15; discussion 79-102. PubMed ID: 11040497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field barriers in graphene: an analytically solvable model.
    Milpas E; Torres M; Murguía G
    J Phys Condens Matter; 2011 Jun; 23(24):245304. PubMed ID: 21628785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic quantum effects mapped onto non-Born-Oppenheimer nuclear paths: nonclassical surmounting over potential barriers and trapping above the transition states due to nonadiabatic path-branching.
    Yamamoto K; Takatsuka K
    J Chem Phys; 2014 Mar; 140(12):124111. PubMed ID: 24697428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy conserving approximations to the quantum potential: dynamics with linearized quantum force.
    Garashchuk S; Rassolov VA
    J Chem Phys; 2004 Jan; 120(3):1181-90. PubMed ID: 15268241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charged particle motion in a time-dependent flux-driven ring: an exactly solvable model.
    Luan PG; Tang CS
    J Phys Condens Matter; 2007 Apr; 19(17):176224. PubMed ID: 21690969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-space averaging and natural branching of nuclear paths for nonadiabatic electron wavepacket dynamics.
    Yonehara T; Takatsuka K
    J Chem Phys; 2008 Oct; 129(13):134109. PubMed ID: 19045080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A topological Dirac insulator in a quantum spin Hall phase.
    Hsieh D; Qian D; Wray L; Xia Y; Hor YS; Cava RJ; Hasan MZ
    Nature; 2008 Apr; 452(7190):970-4. PubMed ID: 18432240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instantaneous Tunneling Flight Time for Wavepacket Transmission through Asymmetric Barriers.
    Petersen J; Pollak E
    J Phys Chem A; 2018 Apr; 122(14):3563-3571. PubMed ID: 29558141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Born-Oppenheimer quantum chemistry on the fly with continuous path branching due to nonadiabatic and intense optical interactions.
    Yonehara T; Takatsuka K
    J Chem Phys; 2010 Jun; 132(24):244102. PubMed ID: 20590176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional Young double-slit numerical experiment with Gaussian wavepackets.
    Ghalandari M; Solaimani M
    Sci Rep; 2020 Nov; 10(1):19458. PubMed ID: 33173094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.